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Metatheory of Logics and the 
Characterization Problem

JA N WO L EŃ S K I

1 Introduction

The word ‘metatheory’ denotes or perhaps suggests a theory of theories. Metascientific
studies in the twentieth century used the term ‘metatheory’ to refer to investigations of
theories in a variety of disciplines, for example, logic, sociology, psychology, history, etc.
However, the philosophers of the Vienna Circle who made metatheoretical studies of
science the main concern of their philosophy restricted metatheory to the logic of
science modeled on developments in the foundations of mathematics. More specifically,
the logic of science was intended to play a role similar to metamathematics in Hilbert’s
sense; that is, it was projected as formal analysis of scientific theories understood as
well-defined linguistic items. The word ‘metamathematics’ was used before Hilbert, but
with a different meaning from his (see Ritter et al. 1980: 1175–8). In the early nine-
teenth century, mathematicians, like Gauss, spoke about metamathematics in an
explicitly pejorative sense. It was for them a speculative way of looking at mathematics
– a sort of metaphysics of mathematics. A negative attitude to metaphysics was at that
time inherited from Kant and early positivists. The only one serious use of ‘metamath-
ematics’ was restricted to metageometry, and that was due to the fact that the 
invention of different geometries in the nineteenth century stimulated comparative
studies. For example, investigations were undertaken of particular axiomatizations,
their mutual relations, models of various geometrical systems, and attempts to prove
their consistency. The prefix ‘meta’ presently suggests two things. First, it indicates 
that metatheoretical considerations appear ‘after’ (in the genetic sense) theories are 
formulated. Secondly, the prefix ‘meta’ suggests that every metatheory is ‘above’ a
theory which is the subject of its investigations. It is important to see that ‘above’ does
not function as an evaluation but only indicates the fact that metatheories operate on
another level than theories do. A simple mark of this fact consists in the fact that 
theories are formulated in an object language, and metatheories are expressed in a
related metalanguage.

It is probably not accidental that Hilbert passed to metamathematics through his
famous study of geometry and its foundations. Hilbert projected metamathematics as
a rigorous study of mathematical theories by mathematical methods. Moreover, the
Hilbertian metamathemics, due to his views in the philosophy of mathematics 



(formalism) was restricted to finitary methods. If we reject this limitation, meta-
mathematics can be described as the study of mathematical systems by mathematical
methods; they cover those that are admitted in ordinary mathematics, including infini-
tistic or infinitary – for instance, the axiom of choice or transfinite induction. However,
this description is still too narrow. Hilbert’s position in metamathematics can be
described as follows: only syntactic combinatorial methods are admissible in metathe-
oretical studies. However, the semantics of mathematical systems is another branch of
the methatheory of mathematics. It is interesting that the borderline between syntax
and semantics corresponds to some extent with the division between finitary and infini-
tary methods. I say ‘to some extent’ because we have also systems with infinitely long
formulas (infinitary logic). It is clear that the syntax of infinitary logics must be inves-
tigated by methods going beyond finitary tools. It was also not accidental that system-
atic formal semantics (model theory) which requires infinitistic methods appeared in
works by Alfred Tarski who, due to the scientific ideology of the Polish mathematical
school, was not restricted to the dogma that only finite combinatorial methods are
admissible in metamathematics. Today, metamathematics can be divided into three
wide areas: proof theory (roughly speaking, it corresponds to metamathematics in
Hilbert’s sense if proof-methods are restricted to finitary tools, or it is an extension of
Hilbert’s position if the above-mentioned restriction is ignored), recursion theory
(which is closely related to the decision problem, that is, the problem of the existence
of combinatorial procedure providing a method of deciding whether a given formula is
or is not a theorem) and model theory, that is, studies of relations between formal
systems and structures which are their realizations; model theory has many affinities
with universal algebra.

The metatheory of logics (plural is proper, because we have many competing logical
systems) is understood here as a part of metamathematics restricted to logical systems.
We can also use the word ‘metalogic’ and say that it refers to studies of logical systems
by mathematical methods. This word also appeared in the nineteenth century (see
Ritter et al. 1980: 1172–4), although its roots go back to the Middle Ages (Metalogicus
of John of Salisbury). Philosophers, mainly neo-Kantians, understood metalogic to be
concerned with general considerations about logic. The term ‘metalogic’ in its modern
sense was used for the first time in Poland (by Jan Ĺukasiewicz and Alfred Tarski) as a
label for the metamathematics of the propositional calculus. Thus, metalogic is meta-
mathematics restricted to logic, and it covers proof theory, investigations concerning
the decidability problem, and model theory with respect to logic.

When we say that metalogic is a part of metamathematics, it can suggest that the
borderline between logic and mathematics can be sharply outlined. However, questions
like ‘What is logic?’ or ‘What is the scope of logic?’ have no uniformly determined
answer. We can distinguish at least three relevant subproblems that throw light on
debates about the nature of logic and its scope. The first issue focuses on the so called
first-order thesis. According to this standpoint, logic should be restricted to standard
first-order logic. The opposite view contends that the scope of logic should be extended
to a variety of other systems, including, for instance, higher-order logic or infinitary
logic. The second issue focuses on the question of rivalry between various logics. The
typical way of discussing the issue consists in the following question: Can we or should
we replace classical logic by some other system, for instance, intuitionistic, many-
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valued, relevant or paraconsistent logic? This way of stating the problem distinguishes
classical logic as the system which serves as the point of reference. Thus, alternative or
rival logics are identified as non-classical. There are two reasons to regard classical
logics as having a special status. One reason is that classical logic appeared as the first
stage in the development of logic; it is a historical and purely descriptive circumstance.
The second motive is clearly evaluative in its character and consists in saying that clas-
sical logic has the most ‘elegant’ properties or that its service for science, in particular,
for mathematics, is ‘the best.’ For example, it is said that abandoning the principle of
excluded middle (intuitionistic logic), introducing more than two logical values (many-
valued logic), changing the meaning of implication (relevant logic) or tolerating 
inconsistencies (paraconsistent logic) is something wrong. It is also said that some 
non-classical logics, for example, intuitionistic or many-valued logics, considerably
restrict the applicability of logic to mathematics. It is perhaps most dramatic in the case
of intuitionistic logic, because it or other constructivistic logics lead to eliminating a
considerable part of classical mathematics. Thus, this argument says that only classi-
cal (bivalent or two-valued) logic adequately displays the proof methods of ordinary
mathematics. While the discussion is conducted in descriptive language, it appeals to
intuitions and evaluations of what is good or wrong in mathematics. The situation is
similar as far as the matter concerns metalogical properties of particular systems such
as completeness, decidability or the like, because it is not always obvious what it means
to say that a logic possesses them ‘more elegantly’ than a rival system. The priority of
classical logic is sometimes explained by pointing out that some properties of non-clas-
sical logic are provable only classically. This is particularly well-illustrated by the case
of the completeness of intuitionistic logic: Is the completeness theorem for this logic
intuitionistically provable? The answer is not clear, because the stock of intuitionisti-
cally or constructively admissible methods is not univocally determined, and they vary
from one author to another. Finally, our main problem (what is logic and what is its
scope?) is also connected with extensions of logics. If we construct modal logics, deontic
logics, epistemic logics, etc., we usually start with some basic (propositional or predi-
cate) logic. We have modal propositional or predicate systems which are based on clas-
sical, intuitionistic, many-valued or some other basic logic. Does any given extension
(roughly speaking, an extension of a logic arises when we add new concepts, for
example necessity, to old ones in such a way that all theorems of the system before
extension are theorems the new system) of a chosen basic logic preserve its classifica-
tion as a genuine logic or does it produce an extralogical theory? The a priori answer is
not clear, even when we decide that this or that basic system is the logic. The problem
of the status of extensions of logic is particularly important for philosophical logic
because it consists mainly of systems of this sort.

The three issues concerning the question ‘What is logic?’ are mutually inter-
connected. The choice between first-order logic or higher-order logic automatically
leads to the two other issues, because it equally arises with respect to any alternative
logic and any extension of a preferred basic logic. Thus, we have a fairly complex situ-
ation. Yet the above division into three issues does not exhaust all problems. Usually it
is assumed that first-order logic (classical or not) is based on the assumption that its
universe it not empty. However, as Bertrand Russell once remarked, that it is a defect of
logical purity, if one can infer from the picture of logic that something exists. This is
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perhaps the main motivation for so-called free logic, that is, logic without existential
assumptions (logic admitting empty domains). Is it classical or not? The described sit-
uation suggests a pessimism as far as the matter concerns a natural and purely descrip-
tive characterization of logic; it seems that an element of a convention is unavoidable
here. A further reason that the domain of metalogic cannot be sharply delimited is that
several metalogical or metamathematical results distinguish logical (even in a wider
sense) from other formal systems. Assume that we decide to stay with the first-order
thesis. The second Gödel theorem (the unprovability of the consistency of elementary
arithmetic) clearly separates pure quantification logic from formal number theory. It is
one reason that metamathematical results are of interest for metalogic. Metalogical
investigations also use several concepts that are defined in general metamathematics,
for example formal system, axiomatizability, consistency, completeness, provability, etc.
Fortunately, we are not forced to answer the borderline question in a final manner. My
aim in this essay is to review the most essential metalogical concepts. Classical first-
order logic is taken as the paradigm. The treatment is rather elementary. Although I
assume some familiarity with syntax and semantics of first-order logic as well as with
several simple concepts of set theory, most employed concepts are explained. However,
some important concepts of metalogic, for instance that of recursive function, do not
allow a brief and elementary clarification. On the other hand, it would be difficult and
not reasonable to resign from them. These concepts are marked by * and the reader is
asked to consult textbooks listed in the references. In particular, I recommend Hunter
(1971) and Grzegorczyk (1974); moreover, Pogorzelski (1994) is suggested as the
fullest survey of metalogic (I follow this book in many matters). Special attention will
be given to relations between syntactic and semantic concepts that are most strikingly
displayed by (semantic) completeness theorems. I do not enter into historical details,
although it seem to be proper to include dates when some fundamental theorems 
were proved (references to original papers are easily to be found in works listed in the
Bibliography).

The characterization problem is a special metalogical issue. It consists in giving suf-
ficient and necessary conditions which determine particular logics or classes of logics.
These conditions can be syntactic, semantic, or mixed. Let me explain the problem in
the case of the propositional calculus. It has been axiomatized in various ways.
However, one axiomatic base, rather long, is particularly convenient here. The axioms
are these (I use the Hilbert-style formalization use of axiom-schemata. Thus, the letters
A, B, C are metalinguistic variables referring to arbitrary formulas of the propositional
calculus and modus ponens (B is derivable from A and A Æ B) is the only inference rule:

(A1) A Æ (B Æ A)

(A2) (A Æ (A Æ B)) Æ (A Æ B)

(A3) (A Æ B) Æ ((B Æ C) Æ (A Æ C))

(A4) A Ÿ B Æ A

(A5) A Ÿ B Æ B

(A6) (A Æ B) Æ ((A Æ C) Æ (A Æ B Ÿ C))

(A7) A Æ A ⁄ B
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(A8) B Æ A ⁄ B

(A9) (A Æ C) Æ ((B Æ C) Æ (A ⁄ B Æ C))

(A10) (A ´ B) Æ (A Æ B)

(A11) (A ´ B) Æ (B Æ A)

(A12) (A Æ B) Æ ((B Æ A) Æ (A ´ B))

(A13) (A Æ B) Æ (ÿB Æ ÿA)

(A14) A Æ ÿÿA

(A15) ÿÿA Æ A

A nice feature of this set of axioms is that we can easily distinguish subsets related to
particular connectives. (A1)–(A3) characterize implication, (A4)–(A6) conjunction,
(A7)–(A9) disjunction, (A10)–(A12) equivalence, and (A13)–(A15) negation. Now if
we eliminate (A15), we obtain the axiom set for intuitionistic logic. Thus, we can say
that (A1)–(A15) solve the characterization problem for classical propositional logic, but
(A1)–(A14) do the same job for intuitionistic propositional logic, provided that the char-
acterization problem is to be solved by axiomatic methods. Other ways of characteriz-
ing logical systems proceed by matrices (truth-tables), semantic tableaux*, trees*,
semantic games* or Hintikka sets*, but all provide conditions which separate various
more or less alternative logics. One characterization result recently became particularly
famous. It is the celebrated Lindström theorem which establishes very general condi-
tions for first-order logic. This theorem and will be presented in a separate section below.

Formal metalogical results are interesting in themselves as well as being philosoph-
ically important. The problem of the nature of logic has a decisively philosophical char-
acter. Several accepted intuitions about logic have gained widespread acceptance: that
logic is formal, universal or topic-neutral, and provides sound (leading always from
truths to other truths) rules of inference. It is interesting to look at metalogical results
as capturing old intuitions; for example, that expressed in the following words of Petrus
Hispanus: dialectica est art artium et scientia scientiarum ad omnium scientiarun methodo-
rum principia viam habent (dialectics (that is, logic) is the art of arts and the science of
sciences that provides methodological principles for all sciences). Another illustration
of the philosophical importance of formal results is that, according to intuitionism,
intuitionistic and classical logic are simply incomparable. It is sometimes maintained
that differences between alternative logics consist in the assignment of different mean-
ings to logical constants and facts, and that these systems are not intertranslatable. As
the characterization problem displayed by axioms for the propositional calculus shows,
however, at least from the classical point of view, classical logic and all weaker systems
are perfectly comparable.

2 Logic via Consequence Operation and Semantics 

Intuitively speaking, logic provides manuals for proving some propositions on the basis
of some assumptions. These manuals consist of inference rules; for example, modus
ponens instructs us that we may logically pass from A and A Æ B as premises to B as
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conclusion. Assume that R is a set of inference rules. The notation X !R A expresses the
fact that a formula A is provable (derivable) from the set X of assumptions, relative to
rules of inference from R (I will omit the superscript indexing the provability sign in
due course). We define

(DCn) A Œ Cn(X) ¤ X ! A.

Although Cn (the consequence operation) and ! (the consequence operator) are mutu-
ally interdefinable, there is a categorial difference between them. Let L be a language
understood as a set of formulas. Cn is a mapping from 2L to 2L that transforms sets of
formulas into sets of formulas, and the consequence operator maps 2L into L, that is,
sets of formulas are transformed into single formulas.

The analysis of logic via the consequence operator is much more common than that
using Cn (see Segerberg (1982) for the first approach). It is also more closely related to
codifications of logic via natural deduction techniques or sequents which are also used
(see Hacking 1979) in analyzing the concept of logic. I will take another route, however,
and concentrate on the consequence operation (I follow Surma (1981); see also Surma
(1994)). The first question that arises here is this: how many consequence operations
do have we? The answer is that there are infinitely many Cn’s. Thus, we need to estab-
lish some constraints selecting a ‘reasonable’ consequence operation (or operations).
Tarski characterized the classical axiomatically Cn (in fact, Tarski axiomatized the con-
sequence operation associated with the propositional calculus; the axioms given below
concern the consequence operation suitable for first order logic). The axioms are these
(explanations of symbols: ∆, the empty set; L, language; N0, the cardinality of the set
of natural numbers; Õ, inclusion between sets; Œ, the membership relation (being an
element of a set); FIN, the class of all finite sets; », union of sets; {A}, the set consist-
ing of A as the sole element; «, product of sets; /, the operation of substitution for
terms):

(C1) ∆ £ L £ N0

(C2) X Õ CnX

(C3) X Õ Y fi CnX Õ CnY

(C4) CnCnX = CnX

(C5) A Œ CnX fi $Y Õ X Ÿ Y Œ FIN(A Œ CnY)

(C6) B Œ Cn(X » {A}) fi (A Æ B) Œ CnX

(C7) (A Æ B) Œ CnX fi B Œ Cn(X » {A})

(C8) Cn{A, ÿA} = L

(C9) Cn{A} « Cn{ÿA} = ∆
(C10) A(v/t) Œ Cn{"vA(v)}, if the term t is substitutable for v.

(C11) A Œ CnX fi"vA(v) Œ CnX, if v is not free* in X, for every B Œ X.

We can divide the axioms (C1–C11) into three groups. The first group includes (C1–C5)
as general axioms for Cn. (C1) says that the cardinality of L is at most denumerably
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(denumerably – finitely or so many as natural numbers) infinite, (C2) that any set is a
subset of the set of its consequences, (C3) established the monotonicity of Cn (in
general, a function f is monotonic if and only if x £ y entails fx £ fy; in fact, inclusion
is a kind of the £-operation), (C4) its idempotency (a function f is idempotent if and
only if ffx = fx), (C5) states the finiteness condition which means that if something
belongs to Cn(X), it may be derived from a finite subset of X. In other words: every infer-
ence is finitary, that is, performable on the base of a finite set of premises and, accord-
ing to the character of rules, finitely long. It is an important property, because there
are also infinitary logical rules, for example the w-rule which leads (roughly speaking)
from the infinite sequence of premises P(1), P(2), P(3), . . . to the conclusion "nP(n),
but it is commonly recognized that human beings cannot effectively use such rules.
(C1–C5) do not provide any logic in its usual sense. The logical machinery is encapsu-
lated by the rest of axioms (related to logic based on negation, implication, and the uni-
versal quantifier): (C6) is modus ponens (it shows that modus ponens is the inverse of
the deduction theorem), (C7) the deduction theorem (if B is derivable from the set X
plus A, then the implication A Æ B is derivable from X; if it is to be applied to predicate
logic, we must assume that A and B are closed formulas, that is formulas without free
variables), (C8)–(C9) characterize negation, and (C10–C11) characterize the universal
quantifier. We can also add axioms suitable for identity or introduce the consequence
operation for intuitionistic logic.

Logic (more precisely: classical first-order logic) can be defined as Cn∆. More 
formally we have:

(DL1) A Œ LOG ¤ A Œ Cn∆, or, equivalently LOG = Cn∆.

Of course, modifications of Cn in accord with the ideas of alternative logics lead 
to their related definitions. For example, intuitionistic logic is given by the equality 
LOGi = Cni∆. (DL1) looks artificial at first sight, because it is clear that the logical con-
tent is related to axioms imposed on Cn; clearly, the empty set here is a convenient
metaphor: we can derive something from the empty set only because of the logical
machinery already built into Cn. Hence, we have the problem of deciding what stipu-
lations about the consequence operation are proper for logic. This question concerns
general as well as special axioms. Worries concerning which logic, classical or some
alternative, is the ‘logic’ also remain on this approach; for example, we can consider
this question with respect to modal extensions or formal systems which contain rules
related to axioms of arithmetic. Are Cnm∆ (the set of modal consequences, relatively to
a system of modal logic, of the empty set) or Cnar∆ (the set of arithmetical consequ-
ences of the empty set) logics)? As far as the general axioms are concerned, we can, 
for instance, drop the requirement of monotonicity (it leads to non-monotonic logics
used in computer science) or finiteness (infinitary logic). Hence, any definition of
logic via the consequence operation needs an additional justification. I will present 
a motivation for classical logic which can be easily applied to other systems.

First of all, let us observe that (DL1) is equivalent to two other statements, namely
(an explanation concerning (DL3): an operation o closes the set X if and only if
oX Õ X, that is, applications of o to X do not produce elements which do not belong 
to X):
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(DL2) A Œ LOG if and only if ÿA is inconsistent.
(DL3) LOG is the only non-empty product of all deductive systems (theories), that

is, sets which satisfy the condition: CnX Õ X (are closed under Cn).

Now, (DL2) and (DL3) surely define properties which we expected to be possessed by
any logic. We agree that negations of logical principles are inconsistencies and that
logic is the common part of all, even mutually, inconsistent theories. Additionally, 
(DL3) entails that logical laws are derivable from arbitrary premises. Thus, we have 
the equivalence: A Œ Cn∆ if and only if A Œ CnX, for any X, and the equality LOG =
Cn∆ = CnX, for any X. These considerations show that (DL1) and its equivalents ex-
press an important intuition, namely that logic is universal in the sense that it does not
require any premises, or is deducible from arbitrary assumptions.

Yet one might argue that such a construction of logic is circular because it defines
logic by means of the prior assumption that something is logical. This objection can be
easily met by pointing out that our definitions are inductive, that is, selects logical
axioms as so called initial conditions and then shows how inductive conditions (in fact,
the rules of inference coded by Cn) lead step by step to new logical elements. On the
other hand, it is perhaps important for philosophical reasons to look at an independent
characterization of logic. This is provided by semantics and it is expressed by (a model
of a set X of sentences is a structure consisting of a universe of objects and a collection
of relations defined on the universe such that all sentences belonging to X are true; 
if we admit open formulas, that is, formulas with free variables, a model of a set X of
formulas is a structure in which all formulas belonging to X are satisfied):

(DL4) A Œ LOG if and only if for every model M., A is true in M.

This last definition describes logic as universal in the sense that logical laws are true in
every model (domain). It is related to the old intuition that logic is topic neutral, that
is, true or valid with respect to any particular subject matter. Intuitively, there is an
obvious link between (DL1)–(DL3) and (DL4). However, we have no formal tools that
prove all these definitions are equivalent. Since (DL1)–(DL3) are syntactical descriptions
of logic (they use the concepts of consequence operation or consistency which are just
syntactic), but (DL4) is semantic in its essence (it defines logic via the concept of a
model), any comparison of the two approaches requires a rigorous investigation of
how syntax and semantics are related. In fact, it consists in a comparison of the set of
theorems (the set of provable formulas) of a system under investigation with the set 
of its validities (truths, tautologies).

3 Metalogic, Syntax and Semantics

Although we basically intend to achieve a precise comparison of syntax and semantics
in logic, this section provides an opportunity to introduce several important metalogi-
cal concepts and properties (others will be defined in the next section). Let S be an arbi-
trary formal system formulated in a language L. The most important metalogical
concepts are summarized by the following list:
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S is consistent if and only if CnS π L; if S contains the negation sign this definition is
equivalent to the more standard: S is consistent if and only if no inconsistent pair
(that is, consisting of A and ÿA) of formulas belongs to the consequences of S.

S is Post-complete (the name honors of Emil Post, an American logician who defined
the property in question) if and only if Cn(S » {A}) = L, for any formula A which
is not a theorem of S.

S is syntactically complete if and only if for any A, either A Œ CnS or ÿA Œ CnS.
S is semantically complete if and only if every provable formula of S is true in every

model of S and every validity (truth) of S is provable in it.
S is decidable if and only if the set of its theorems is recursive*.
S is axiomatizable if and only if there is a set Ax Õ S such that S = CnAx; if Ax is finite

(recursive) we say that S is finitely (recursively) axiomatizable.

Some comments are in order. Various labels for particular properties are employed by
various authors. For example, syntactical completeness is sometimes called negation-
completeness. Semantic completeness has in fact two ingredients. The direction from
provability to validity (every truth is provable) is considered as soundness (correctness,
adequacy) and semantic completeness proper, so to speak, is expressed by the reverse
implication (every truth is provable). The given definition of decidability is related to
the Church thesis*, that is, the proposal to identify intuitively calculable functions 
(calculable in the finite mechanically performable steps) with recursive functions.
Finally, the definition of axiomatizability does not exclude the situation that S forms 
its own axiomatic base.

We are mainly interested in properties of logic. The propositional calculus is consis-
tent, post-complete, syntactically incomplete (it is enough to consider a single variable;
neither p nor ÿp are theorems of propositional logic), sematically complete, decidable
(by the truth-table method) and finitely axiomatizable (by concrete formulas) or recur-
sively axiomatizable (by schemata). One qualification is needed with respect to the
concept of post-completeness. This property holds for the propositional calculus with
axioms as concrete formulas and the rule of substitution. Fortunately, we can define
another property, parallel to post-completeness which is possessed by the propositional
calculus when it is formalized by axiom-schemata. Now, first-order predicate logic is
consistent, not post-complete (if we add, for example, the sentence ‘there are exactly
two objects’ which is not a logical theorem as a new axiom, the resulting system is not
inconsistent), not syntactically complete, semantically complete (proved by Kurt Gödel
in 1929), undecidable (proved by Alonzo Church in 1936), and finitely or recursively
axiomatizable. All these facts apply to first-order predicate logic with identity. Gödel
proved in 1931 two famous theorems (both of which assume that arithmetic is 
consistent): (1) every formal system strong enough for the elementary arithmetic 
of natural numbers is syntactically incomplete; (2) the consistency of arithmetic is
unprovable in arithmetic; both theorems assume that arithmetic is consistent. The first
theorem implies that arithmetic is not recursively axiomatizable. Tarski showed in 1933
that the set of arithmetical truths is not definable arithmetically*. Finally, Church
proved in 1936 that arithmetic is undecidable. These four theorems are usually called
limitative theorems, because they point out limitations inherent to any formalism 
sufficiently rich to cover the arithmetic of natural numbers.
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For our aims, semantic completeness is the most important. In its most general form,
the completeness theorem (in its strong form) says (the symbol |= stands for validity):

(CT) S is semantically complete if and only if: S ! A ¤ S |= A.

(CT) is equivalent to the Gödel–Malcev theorem:

(GM) S is consistent if and only if it has a model.

The proof of (GM) requires the axiom of choice* (or its equivalents) which means that
it is not a constructive theorem. The most popular proof of (CT) uses the Lindenbaum
lemma: every consistent set of sentences has a maximal consistent extension (maxi-
mality means here that adding any sentence to a maximally coinsistent set leads to
inconsistency); this lemma is also not constructive. If we put ∆ instead S in (CT), we
obtain ∆ ! A if and only if ∆ |= A. By (DCn), it gives the weak completeness theorem

(CT1) A Œ Cn∆ ¤ ∆ |= A.

Since the right part of (CT1) expresses the fact that A is true in all models, it legitimizes
the equivalence of (DL1) and (DL4) for first-order predicate logic with identity. It should
be clearly noted that the completeness theorem, although it establishes the parity of
syntax and semantics in semantically complete systems, it does not provide in itself any
definition of logic. However, if we agree that universality is its characteristic property,
(CT1) shows that universality in the syntactic sense (provability from the empty set of
premises) is exactly equivalent to universality in the semantic sense (truth in all models
or logical validity). Moreover, this part of (CT) (or (CT1)) which expresses the sound-
ness property (if a formula is provable, it is also true) justifies the intuition that logical
rules are infallible: they never lead from truths to falsehoods.

The universality property is also displayed by another theorem, the neutrality
theorem, which asserts that first-order predicate logic with identity does not distinguish
any extralogical concept, that is, any individual constant or predicate parameter (ci, cj

are individual constants, Pk, Pn are predicate parameters, the notation A(c) and A(P)
means that a constant c (predicate parameter P) occurs in A):

(N) (a) A(ci) Œ LOG fi A(cj/ci Œ LOG; (b) A(Pk) Œ LOG fi A(Pn/Pk) Œ LOG.

This theorem says that if something can be provable in logic about an object or its prop-
erty, the same can be also proved about any other object or property. It is of course
another aspect of the topic-neutrality of logic.

4 The Characterization Problem for First-order Logic

The strong completeness theorem motivates a stronger understanding of logic. Let T
be an extralogical theory (axiomatized by the axioms belonging to the set Ax). Thus T
is the ordered triple (see Rasiowa and Sikorski 1970: 187).
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·L, Cn, AxÒ.

Now the consequence operation Cn operating on L and Ax generates the logic of T.
Denote logic in this extended sense by LOGT and logic given by (DL1) by LOG∆ (it 
operates on the empty set). Of course, LOG∆ Õ LOGT. The modification is not essential
for logic in this sense: the stock of logical rules, given by Cn∆, is the same. However,
this extended concept of logic, which focuses on its applications, leads to a more 
general formulation of the characterization problem.

Call a logic regular if its logical symbols obey classical (Boolean) principles (it is prac-
tically restricted to negation; roughly speaking, ‘Boolean’ means that our logic is per-
fectly two-valued); we also assume that L is countable, that is, contains at most
denumerably many sentences. A logic satisfies the compactness property (Com) if and
only if it has a model if its every finite subset has a model. A logic satisfies the
Löwenheim–Skolem property (LS) if and only if it has a countable model if it has an infi-
nite model. The Lindström theorem (proved by Per Lindström in 1969) is the statement:

(L) First-order predicate logic is the strongest logic which satisfies (Com) or (CT),
and (LS).

For example, second-order logic (first-order logic has quantifiers ranging over individ-
uals; second-order logic also admits quantification over properties – the sentence ‘for
any object x, there is a property P such that x has P’ is an example of a second-order
sentence) satisfies neither (Com) nor (LS), but (CT) holds for it, if we admit second-order
quantification over special entities, and logic with the quantifier ‘there are uncountably
many’ is complete, but then it does not obey (LS). Of course, (L) holds also for logic
defined by (DL1), that is, for Cn∆. Let me add that no counterparts of (L) are known
with respect to non-classical logics, in particular, intutionistic or many-valued logics.
The reason is that they are not regular.

There is a considerable debate concerning the interpretation and consequences of
(L) (see Barwise 1985). All parties agree that (L) asserts the limitations on the expres-
sive power of first-order predicate logic. In particular, several mathematical concepts,
like finiteness, cannot be defined in its language. Hovever, it is a matter of controversy
whether (L) determines that only first-order predicate logic deserves to be counted as
the logic. The first-order thesis, previously explained, restricts the scope of logic to first-
order logic, but the opposite standpoint maintains that if logic is to serve mathematics,
its expressive power must be much greater than that of first-order languages. It is now
clear why this problem becomes central when an extended concept of logic is assumed.
Since definability is traditionally regarded as a logical issue, its limitations are perceived
as limitations of the power of logic. I will come back to these questions in the next (and
final) section.

5 Final Remarks

In this section, I come back to philosophical issues concerning the concept of logic. Let
me start with the first-order thesis. Its opponents argue that it restricts the application
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of logic in science, in particular, in mathematics, which requires that logic should have
a considerable expressive or defining power in order to capture various mathematical
concepts. On the other hand, the first-order thesis focuses on the universality property
of logic and the infallibility of its inferential machinery (see Woleński 1999). Thus, we
have to do here with a conflict between two different expectations concerning logic. The
postulate that logic should have great expressive power recalls the ambitious projects of
logica magna or lingua characteristica proposed by Leibniz, Frege, or Russell and intended
as languages which are able to cover the whole of science or at least mathematics. The
first-order thesis motivated by (L) and (N) sees logic as providing universally valid theo-
rems, being the common part of all deductive systems, always generating a perfectly
sound inference machinery. The issue is serious because either we can have strict uni-
versality or languages with a great expressive power, but not both virtues together. We
can assume that Cn∆ always provides secure rules of inference. Thus, the point is what
should be regarded as logical: only propositional connectives, quantifiers, and identity,
or perhaps also other concepts, like finiteness. It is not surprising that (CT) contributes
to our understanding of the universality of logic. However, it was not expected that
(Com) and (LS) do too, though if first-order predicate logic does not distinguish any
extralogical concepts, it also should be neutral with respect to the cardinality of models,
that is, the number of elements in their universes. It is interesting that there are also
problems when we consider identity as a logical concept. The argument for its status as
a logical constant stems from the fact that first-order logic with identity relation satisfies
(CT), (N), and (L). On the other hand, identity enables us to define numerical quantifiers,
for example, ‘there are exactly two objects’, but there are doubts whether such phrases
deserve to be called logical. Thus we have reasons to say that the prospects for an answer
to the question ‘What is logic?’ that is unconditional and free of at least some degree or
arbitrariness, are not encouraging. The problem becomes still more complicated when
non-classical logics are taken into account.

New problems arise when extensions of a basic logic are analyzed. It may be demon-
strated by modal logic. Since modal systems are more closely treated in a separate
chapter in this Companion, I limit myself to a very sketchy remarks. We can and even
should ask whether " (necessity) and ‡ (possibility) are logical constants? One might
argue that since special conditions, related to particular modal systems, are imposed
on modal models, especially on so-called accessibility relations (for example, deontic
logic requires that this relation is irreflexive, the system T is associated with the condi-
tion of symmetry, etc.), modal logics are not universal. On the other hand, the system
K does not require any particular constraint. Yet we can say that its characteristic
formula "(A Æ B) Æ ("A Æ "B) is a modal translation of the theorem of first-order
logic "x(A Æ B) Æ ("xA Æ "xB). However, K is a very weak system and does not
display all traditional intuitions concerning logical relations between modalities. Thus,
we perhaps should decide: either universality (no special provisos on modal models) or
more content, like in the case of the controversy over the first-order thesis.

How then does metalogic contribute to our understanding of logic? The answer
seems to be this. Although metalogical theorems do not provide answers which are free
of conventional elements, they precisely show those points where intuitions go beyond
formal results.
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