
WHAT IS LOGIC?

Jaakko Hintikka and Gabriel Sandu

1 LOGIC AND INFERENCE

It is far from clear what is meant by logic or what should be meant by it. It is
nevertheless reasonable to identify logic as the study of inferences and inferential
relations. The obvious practical use of logic is in any case to help us to reason
well, to draw good inferences. And the typical form the theory of any part of logic
seems to be a set of rules of inference.

This answer already introduces some structure into a discussion of the nature of
logic, for in an inference we can distinguish the input called a premise or premises
from the output known as the conclusion. The transition from a premise or a
number of premises to the conclusion is governed by a rule of inference. If the
inference is in accordance with the appropriate rule, it is called valid. Rules of
inference are often thought of as the alpha and omega of logic. Conceiving of logic
as the study of inference is nevertheless only the first approximation to the title
question, in that it prompts more questions than it answers. It is not clear what
counts as an inference or what a theory of such inferences might look like. What
are the rules of inference based on? Where do we find them? The ultimate end
one tries to reach through a series of inferences is usually supposed to be a true
proposition. Frege [1970, 126] wrote that “the word ‘true’ characterizes logic.” But
how does this desideratum determine the rules of inference? A few distinctions
will illustrate the embarrassment of riches covered by the term “logic” and at the
same time sharpen the issues.

Inferences can be either deductive, that is, necessarily truth preserving, or am-
pliative, that is, not necessarily truth preserving. This distinction can be identified
with the distinction between such steps in reasoning as do not introduce new in-
formation into one’s reasoning and such as do not do so. For if that information is
genuinely new, its truth cannot be guaranteed by the old information. Or, rather,
we could thus identify deductive inferences as uninformative ones if we had a vi-
able notion of information at our disposal. Unfortunately, the viability of a notion
of information that could be used to make the distinction has been challenged by
philosophers, notably by W.V. Quine [1970, 3-6, 98-99], as a part of his criticism
of what he calls the analytic-synthetic distinction [Quine, 1951]. A closer exami-
nation shows that we have to distinguish from each other two kinds of information,
called depth information and surface information [Hintikka, 1970; forthcoming (c)].
A valid deductive inference cannot introduce new depth information, but it can
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increase surface information. Quine’s scruples can be best understood as being
based on the difficulty of separating depth information and surface information
purely behaviorally.

Philosophers generally consider deductive reasoning as the paradigmatic type of
inference. However, there is a widespread view among nonphilosophers that might
be called the Sherlock Holmes view. According to it all good reasoning including
ampliative reasoning, turns on “deductions” and “logic”. (Cf. [Hintikka, 2001].)

2 DEDUCTIVE INFERENCE AND INFORMATION

Being truth-preserving, deductive inference is essentially cumulative or, to use a
more common term, monotonic. In recent years, spurred largely by studies of
automated reasoning of different kinds, there has mushroomed a wide variety of
nonmonotonic logics. (See e.g. [Antoniou, 1997; Gabbay et l., 1993-1996, vol.3].)
They are all obviously modes of ampliative reasoning, and should be studied as
such. They will be commented on in §17 below.

If a deductive inference does not introduce new information, it is in some sense
uninformative or tautological. Such uninformativeness of deductive inference was
maintained by among others by the early Wittgenstein and by the logical posi-
tivists. (See [Hempel, 1945; Dreben and Floyd, 1991].) Such a view is unsatisfac-
tory, for it leaves unexplained what the reasoner gains by drawing such allegedly
uninformative conclusions. Something important can obviously be gained through
deduction. This air of unintuitiveness can be dispelled by means of the distinc-
tion between depth information and surface information mentioned in §1. Surface
information can be characterized as the information that can be read off from
a sentence without any nontrivial deductive ado, while depth information is the
totality of (surface) information that can be extracted from it by deductive logic.
The emergence of new surface information explains why purely deductive inference
can be experienced as informative and even productive of surprises.

The noninformativeness (in the sense of depth information) of deductive infer-
ence is a presupposition of one of the most important kinds of application of logic.
This application is axiomatization. The leading idea of this method, vividly em-
phasized by David Hilbert, is to summarize our knowledge of some model or class
of models, for instance certain physical systems, in an axiomatic theory [Hilbert,
1918]. That model or those models can then be studied by deducing theorems from
the axiom system. Such a summation is not possible if new information about the
subject matter can be introduced in the course of the deduction.

3 ANALYTIC INFERENCES

A distinction within deductive inferences can be made between those that depend
only on the meaning of logical concepts, expressed in language by what is known
as logical constants, and those that depend also on the meaning of nonlogical
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constants. Deductive logic in the narrow sense is restricted to the former. Truth-
preserving inferences that are not purely logical in this narrow sense are often called
analytic. This distinction presupposes a distinction between logical and nonlogical
concepts, expressed by logical and nonlogical terms. It is not obvious how such
a distinction can be drawn, except perhaps by merely enumerating the logical
constants of the given language. (Cf. here [Etchemendy, 1983; 1990; Hintikka,
2004b].) (Concerning the different meanings of “analytic” in logic and its history,
see [Hintikka, 1965; 1973].)

Deductive inferences involving nonlogical words are studied among other places
in what is known tendentiously as philosophical logic. (This label is misleading
because it suggests that deductive logic in the narrower sense is not philosophically
important.) Historically studies in such earliest “philosophical” logic were logics
calculated to capture such notions as necessity and possibility. They are known as
modal logics. (See e.g. [von Wright, 1951a; Carnap, 1947; Kripke, 1963; Lemmon
and Scott, 1977; Shapiro, 1998; Blackburn et al., 2001].) Later, attempts have
been made to capture such related notions as entailment and relevance. (Cf.
e.g. [Anderson et al., 1992].) Philosophical logic also comprises among its other
branches epistemic logic, that is, the theory of inferences that depend on the
meaning of epistemic terms (see [Hintikka, 1962; 2003]), deontic logic (theory of
normative discourse (see [von Wright, 1951b; 1983; Hilpinen, 1971])), and tense
logic (theory of inferences turning on the meaning of temporal terms (see [van
Benthem, 1982; Gabbay et al. 1993–1996, vol. 4])).

The logical behavior of many terms that do not overtly deal with truth-preserving
inferences can still be studied by the same method and often partly reduced to
the theory of truth-preserving logics. Cases in point are the logic of questions
and answers (erotetic logic) which can be considered an aspect of epistemic logic.
This is made possible by the fact that questions can be construed as requests
for information and their behavior can be studied by reference of the statement
(known as the desideratum of a question) which specifies the epistemic state that
the questioner wants to be brought about. Similar things can be said of the logic
of commands.

Borderline cases are logics that depend on the meaning of probabilistic terms
(probability logic [Adams, 1998]), or the behavior of the membership relation
(set theory), or on the part-whole relation (mereology (see [Husserl, 1913; Fine,
1995; Smith, 1982])). Indeed, attempts have been made, among others by Rudolf
Carnap [1950; 1952], to interpret probability (in at least one of its senses) as a
purely logical concept. An especially difficult question concerns set theory. Some
of the most characteristic axioms of set theory, for instance the axiom of choice,
can be construed as logical truths of higher-order logic (see below). Yet in set
theory models are sometimes studied in which the axiom of choice is not true. In
the usual foundations of set theory the axiom of choice is not treated as a part
of the logic used but as an additional mathematical assumption. Thus currently
both probability theory and set theory seem to reside in a limbo between logic and
special mathematical theories.
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4 AMPLIATIVE INFERENCE

Ampliative reasoning includes prominently inductive reasoning, in which the
premises are particular propositions and the conclusion either a generalization
or a new particular proposition [Skyrms, 1966]. It is to be noted, however, that
induction or epagoge originally included and sometimes simply meant a different
kind of inference, viz. the extrapolation and interpolation of partial generalizations
[Hintikka, 1993]. The logic of inductive inference in this historical sense is quite
different from that of the ordinary induction which might be labelled “Humean
induction”. Inductive inference in this sense can be either qualitative or proba-
bilistic. Qualitative induction can depend on the elimination of alternatives to the
conclusion (eliminative induction). Probabilistic induction is sometimes thought
to subsume inductive inference to probabilistic inference.

Even though induction was earlier thought of as the only alternative to deductive
reasoning, an abundance of other kinds of ampliative modes of reasoning have
recently been studied. They include the theories of rational belief change and
various forms of nonmonotonic reasoning. They will be discussed below in §17.

Besides the usual so-called classical logics there are also logics that do not
involve nonlogical concepts but which are supposed to be grounded on a nonstan-
dard interpretation of logical notions themselves. They include intuitionistic and
constuctivistic logics. (See [Heyting, 1956; Dummett, 1977] and [Bishop, 1967].)
Some logics are supposed to be applicable to special subject matters, as e.g. the
so-called quantum logics. (See [Hooker, 1975–77].)

5 LOGICAL VS. EXTRALOGICAL SYSTEMATIZATION

Instead of thinking of logic as the study of inferences, it is sometimes construed as
a study of logical truths. The two conceptions are closely interrelated. In order for
a deductive inference from F to G to be valid, the conditional sentence If F , then
G (in symbols (F ⊃ G)) must be logically true. Whether the converse relation
holds depends on whether the validity of (F ⊃ G) guarantees the existence of a
rule of inference that mandates a move from F to G. Indeed, more may be required
for the validity of an inference from F to G than the logical truth of (F ⊃ G). For
instance, it may be required that the rule takes us from a way of verifying F to a
way of verifying G.

Speaking of logical truths can be misleading, however, for logical truth need
not and perhaps should not be considered as a variant of plain ordinary truth.
Truth is relative to one model (scenario, possible world), whereas logical truth is
on this conception truth in all possible models (scenarios, possible worlds). This
distinction is reflected in a parallel distinction between axiomatizations of ordinary
substantial theories and axiomatizations of this or that part of logic. What are
known as formal systems of logic are systematizations of logical truths. They
are formulated in a partial analogy with substantial axiomatic theories. A few
formulas or types of formulas are designated as axioms from which theorems are



What is Logic? 17

derived according to purely formal rules. This has been the standard format of
formal systems of logic since Frege.

There are nevertheless important differences between the two kinds of axiomati-
zations. What an ordinary axiom system accomplishes (if successful) is to capture
all the truths about the relevant system or systems, as deductive consequences of
the axioms. In other words, what an ordinary non-logical axiom system is cal-
culated to do is to help us to study some aspect of reality or some mathematical
structure (or class of structures) by examining the logical consequences of an axiom
system. In contrast, what a formal system of some part of logic is calculated to do
is in the first place merely to list mechanically all the logical truths of that part of
logic. This is a substantial difference. It is for instance not always the case that
logical consequence relations can be captured by purely formal (mechanical) rules
of deductive inference. Furthermore, the so-called rules of inference of a logical
axiomatization need not ever be truth-preserving, unlike the real rules of inference
of a substantial axiom system. They are not necessarily intended as guidelines for
actually drawing inferences. In a sense, only the rules of inference of a nonlogical
(substantial) axiom system are genuine rules of logical inference. Hence the role
of logic as a system of rules of inference is in a sense more prominent in nonlogical
axiomatizations than in logical ones.

Likewise, the exhaustiveness of the enumeration, known as completeness of the
axiom system, is different in the two kinds of axiomatization. In the case of logical
axiomatization, the term “semantic completeness” is typically used, whereas in
the case of substantial axiom systems one usual term is “deductive completeness.”

6 SYNTAX VS. SEMANTICS

The concept of logical truth becomes useful when we begin to develop an explicit
logical theory, maybe even an axiomatic one. Such a systematic logical theory
can be implemented in two main ways. One leading idea in the early development
of modern logic was to try to invent a notation or symbolism so explicit and so
flexible that the criteria of valid inference and of logical truth could be captured
by reference to the formal features of this symbolism, without referring to their
meaning. In other words, the application of these criteria happens by a calculation
with symbols. This idea is what the term “symbolic logic” was calculated to
highlight. Such a study of the purely formal features of a language is usually
referred to as its syntax. In systematic logical studies this approach includes
what is known as proof theory, and is sometimes referred to as such. This idea
is somewhat similar to the project of transformational grammarians like Noam
Chomsky to capture what are essentially semantical notions, such as ambiguity,
co-reference and logical form, in purely syntactical terms [Chomsky, 1975].

In contrast, a study of the relations of a language to the reality it can be
used to represent is known as its semantics. In logic, it includes what is known
as model theory, even though this term usually refers to the particular kind of
studies launched largely by Alfred Tarski [1935; 1944, 1956]. Sometimes these
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two are distinguished from pragmatics, which is supposed to be the study of the
uses of language. This distinction is not well defined, however, for the language-
world relations studied in semantics can be constituted by rule-governed uses of
language, as for instance in Wittgenstein’s language games or in game-theoretical
semantics [Wittgenstein, 1953; Hintikka and Sandu, 1997].

One of the most important semantical concepts is that of truth. Since the
validity of a deductive rule of inference means that is is necessarily truth preserving,
the theory of deductive logic must have its foundation in a theory of semantics
(model theory). At the earlier stages of the development of modern logic, the need
of such a basis was usually denied or at least neglected. The hope was that in
an appropriate symbolism all the important semantical properties and relations
between propositions would have syntactical counterparts that could be studied
proof-theoretically, for instance by means of suitable formal systems of logic.

7 THE LIMITS OF SYNTACTICAL APPROACHES

This hope was in the case of logical notions shattered by the incompleteness the-
orems of Kurt Gödel and the impossibility theorems of Alonzo Church and Alfred
Tarski. (See [Davis, 1965].) Gödel showed that any first-order system of elemen-
tary arithmetic is inevitably incomplete in that some arithmetical propositions in
it are true but unprovable. He also showed that the consistency of a system of
elementary arithmetic cannot be proved in the same system. Church showed that
the decision problem for first-order logic is undecidable, that is, that the set of
logical truths of this part of logic is not recursive. Tarski developed techniques
of defining the concept of truth for suitable logical languages, but at the same
time showed that such definitions can only be formulated in a richer metalan-
guage [Tarski, 1935]. Since our actual working language presumably is the richest
one we have at our disposal, the concept of truth cannot according to Tarski be
consistently applied in what Tarski called the “colloquial language”. In particular,
Tarski showed that the concept of truth for any first-order axiom system cannot
be defined in the same system.

These results are also relevant to the question of the relationship of syntactically
explicit (“formalized”) logic and the logic implicit in natural languages and in
ordinary discourse. Earlier it was often thought and said that the logical symbolism
is little more than a streamlined and regimented version of an ordinary language.
The main advantage of a symbol language was seen in its freedom of ambiguities
and other obscurities.

This idea lives on in a modified form in that some theorists of language consider
the notion of logical form, expressible in the logical symbolism, as playing an
important role in grammatical theory.

There is strong evidence, however, to suggest that logical symbolism and ordi-
nary language are more radically different than was assumed by the earliest “sym-
bolic logicians”, For instance, the presuppositions of first-order language examined
in SS11–12 below are fairly obviously not satisfied by our ordinary language. Like-
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wise, the notion of independence discussed in §12 is not expressed in most natural
languages in a uniform way, even though it turns out to be quite prevalent in their
semantics.

The wisest course appears to be to consider formal logical languages as alter-
natives to one’s own natural language in the same sense in which one’s second
language offers an alternative way of expressing oneself. What can be hoped
is that there might be a privileged kind of logical language that would express
the true logical forms underlying all languages, formal and natural. This ideal
language would be a true “language of thought” alias Frege’s Begriffsschrift or
conceptual notation [1879]. Whether our actual logical languages can claim to be
approximations to such a language of thought, and if so to what extent is a moot
question.

8 THE LIMITS OF SEMANTICAL APPROACHES

The need of a semantical basis of a theory of deductive logic has nevertheless been
denied for different reasons. One reason is the view which was strongly represented
among the early major figures of contemporary logic (Frege, early Russell, early
Wittgenstein etc.) and which was still current recently (Quine, Church etc.) to the
effect that the semantics of a language cannot be expressed in the same language.
This kind of view has been strongly encouraged by the result of Alfred Tarski
[1935] according to which the central semantical notion of truth can be defined for
a first-order language (see below) only in a richer metalanguage. In so far as this
result applies to our actual working language, it suggests that the notion of truth
cannot play a role in our “colloquial language” as Tarski called it, for it cannot
have any richer metalanguage above it.

If this impossibility really prevails, there cannot be any general semantical foun-
dation of logic understood as a theory of inference.

How conclusive are these negative results in a general perspective? This ques-
tion will be revisited below. In any case, some parts of logic allow for a complete
axiomatization. For one thing, Gödel proved the semantical completeness of the
received first-order logic in 1930. Since this logic is often taken to be the central
area of logic — and even taken to exhaust the purview of symbolic logic —, this
has created the impression that the dream of purely symbolic deductive logic is
indeed realizable and that the negative results pertain only to impure extensions
of the proper province of deductive logic. In any case, the questions whether dif-
ferent parts of logic admit of a semantically complete axiomatization and whether
different mathematical theories admit of a deductively complete axiomatization
are crucial in establishing the prospects and the limits of symbolic (syntactical)
methods in logic. This is why Gödel’s first incompleteness theorem is so important,
in that it shows that elementary arithmetic cannot be completely axiomatized in
the sense of deductive completeness.

The question of axiomatization should not be confused with the question whether
logic is formal discipline. By one commonly used definition, in deductive logic a
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sentence is logically true if and only if its truth depends only on the way in which
logical terms occur in it. If so, logical truths of deductive logic are all formal
independently of the question of whether they can be mechanically enumerated by
means of a formal axiom system.

9 STRATEGIC VS. DEFINITORY RULES

An important further distinction between different aspects of logical studies derives
from the nature of logical reasoning (inference-drawing) as a goal-directed activity.
In practically all such activities a distinction can be made between different two
kinds of rules. This distinction is especially clear in the case of games of strategy.
(Cf. [von Neumann and Morgenstern, 1944].) In them, we can distinguish the
definitory rules which specify what may happen in the game from the strategic
rules which tell how to play the game better or worse. For instance, the definitory
rules of chess determine what moves are possible, what counts as checking and
checkmating etc., whereas following the strategic rules of chess is what makes a
player better or worse. Strategic rules are not merely heuristic. They can in
principle be as precise as the definitory rules, even though they are quite often so
complicated as to be impossible to formulate explicitly.

Logical theory involves the study of both definitory rules and strategic rules of
the “game” of logic. (See [Hintikka, 2001].) It is important to realize that what are
called rules of inference must be considered as definitory rules. They do not tell
what inferences one should draw from the available premises or what inferences
people in fact draw from them always or usually. They are neither descriptive nor
prescriptive rules; they are permissive ones. They tell what one can do without
committing a logical mistake. They tell one how to avoid logical mistakes, known
as fallacies. The study of fallacies has been part of logic ever since Aristotle. In
so far as fallacies are violations of rules of inference in the narrow sense, the study
of fallacies is not an independent part of logical studies. Many of the traditional
fallacies are in fact not mistakes in applying deductive rules of inference, but either
violations of the rules of other parts of logic or else strategic mistakes. For instance,
the fallacy of begging the question did not originally mean circular reasoning, as
it is nowadays viewed, but the mistake of asking directly the principal question of
an interrogative inquiry. This question is supposed to be answered by putting a
number of “small” questions to suitable sources of information.

This definitory vs. strategic distinction provides an interesting perspective on
logical studies. In logical theorizing, a lion’s share of attention has been devoted
to definitory rules at the expense of strategic rules, even though the latter ones are
what defines good reasoning. One historical reason for this may be the crisis in
the foundations of mathematics in the early twentieth century which prompted an
emphasis on the soundness of rules of logical inference. Yet for actual applications
of logic strategic rules are incomparably more important.

There also prevails a confusion as to how certain types of human reasoning
should be modeled by means of a logical system. Are the principles of such hu-
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man reasoning to be captured by means of definitory rules or of strategic rules of
reasoning? The latter answer is the more promising one, even though many devel-
opments in logic are apparently predicated on the former answer. For instance, it
is fairly obvious that the principles of rational belief change should be captured by
strategic rules rather than definitory rules, contrary to what many theorists are
trying to do.

A characteristic difference between the two kinds of rules is that definitory rules
normally concern particular moves, whereas strategic evaluation pertains in the
last analysis to entire strategies in the sense of game theories. (Such strategies
prescribe what a player should do in all the possible situations that he or she or
it might encounter in a play of the game.)

These observations help us to understand what can correctly be meant by logical
necessity. Contrary to what the dominating view of most philosophers was for a
long time, there is no necessity about actually drawing logical inferences. Even
when G is a logical consequence of F , one does not have to think of G as soon
as one thinks of F . What is the case is that G must be the case as soon as F is
true. You cannot bring it about that F without ipso facto bringing it about that
G. Hence it is permissible in truth-preserving reasoning to move from F to G.

The definitory vs. strategic distinction also throws some light on the idea of non-
monotonic reasoning. The aim of logical reasoning manifesting itself in the form
of a series of inferences, is normally a true ultimate conclusion (if for a moment we
look away from probabilistic inferences). Hence it might seem as if the very idea of
logical inferences that do not always preserve truth were an oxymoron. A solution
to this problem is to point out that a sequence of inferences may ultimately lead to
a true ultimate conclusion even if some of the individual inferences in the sequence
are not truth preserving. This observation can be taken to vindicate the possibility
of non-monotonic logics. At the same time it shows that a satisfactory theory of
nonmonotonic logic must contain a strategic component, for rules of individual
inferences cannot alone guarantee the truth or the probability of the conclusion
of an entire sequence of nonmonotonic inferences. Such a strategic component is
nevertheless missing from most nonmonotonic logics.

10 WHAT IS FIRST-ORDER LOGIC?

One way of trying to answer the title question of this article is to examine what
has generally been taken to be the core area of logic. This is the logic of propo-
sitional connectives and quantifiers, known as first-order logic, predicate logic or
quantification theory. (Cf. [Smullyan, 1968].) Since these are logical notions par
excellence, in the light of the distinctions just made, this core area should be the
study of deductive logic based on the meaning of logical concepts, studied pri-
marily from the vantage point of correctness (definitory rules). Now the central
logical concepts are generally recognized to be the (standard) quantifiers, that
is, the notions expressed by “all” and “some” and propositional connectives like
“and”, “or”, “if-then”, and “if and only if”. Some of the features of the behavior
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of quantifiers were studied already in the Aristotelian syllogistic which dominated
logic until the nineteenth century. Gottlob Frege and C.S. Peirce, by removing the
restriction to one-place predicates as distinguished from relations, overcame many
of the limitations of syllogistic logic. The result, codified in the Principia Math-
ematica (1910-13) by Bertrand Russell and A.N. Whitehead, is a general theory
of quantifiers and propositional connectives. Slowly, this theory was divided into
first-order logic, in which the values of quantified variables are individuals (partic-
ulars) and higher-order logic, in which they can be entities of a higher logical type,
such as sets, properties and relations. It is this first-order logic that is generally
considered as the core area of logic.

What first-order logic is like is most directly explained by identifying the struc-
tures that can be discussed by its means. In an application of first-order logic, we
are given a class of individuals, known variously as the domain of the model or its
universe of discourse. In the inference rules for first-order logic, they are thought
of as particular objects. They are represented by individual constants (names of
individuals). On that domain, a number of properties and relations are defined,
represented by predicates of one or more argument places. The central notions are
the two quantifiers, viz. the existential quantifier (∃x) and the universal quantifier
(∀y), each of which has a variable attached to it facilitating a later reference to the
same individual. They express the notions of at least one and every as applied to
the domain of individuals. Furthermore, the logical notation includes a number of
propositional connectives, for instance negation ∼, conjunction &, disjunction ∨,
and conditional (“if – then”) ⊃ . In classical logic, they are assumed to be charac-
terized by their truth-tables. Atomic formulas are formed by inserting individual
constants and/or individual variables into the argument-places of predicates. The
rest of the formulas are formed by repeated uses of quantifiers and propositional
connectives. Often, the notion of identity is also included, expressed by = with
individual constants and/or variables flanking it. Formulas without free variables
are called sentences. They express propositions about the universe of discourse.

First-order logic has a regular model theory. Among its metatheoretical prop-
erties there are compactness, the Löwenheim-Skolem properties, and separation
properties. Most importantly, first-order logic admits of a semantically complete
axiomatization, as was first shown by Gödel in 1930. These features of first-order
logic are sometimes taken to be characteristic of logical systems in general. First-
order logic was often considered by earlier philosophers as the logic, and even later
their idea of what logic is, is modeled to a considerable extent on first-order logic.

11 PRESUPPOSITIONS OF THE RECEIVED FIRST-ORDER LOGIC

The central role of first-order logic is illustrated by the fact that it is widely used
as a medium of representing the semantical (logical) form of natural-language sen-
tences, including philosophical theses. Even Chomsky at one time [1986] consid-
ered his LF structures, which are the basis of semantical interpretation of English
sentences, have a structure closely similar to the forms of a first-order (quantifi-



What is Logic? 23

cational) formula. This practice is not without problems, however. One of the
most prominent features of the notation of received first-order logic is a difference
between it and the way natural language apparently operates. Natural-language
verbs for being do not have a single translation into the logical notation, but
have to be expressed in it differently in their different uses. (Cf. here [Hintikka,
1979].) A verb like is must on different occasions be treated as expressing identity,
predication, or existence. On still other occasions, it may help to express class-
inclusion, location or assertion (veridical is). Does this show that verbs like is
are ambiguous? Only if the received notation of first-order logic is assumed to be
the uniquely correct framework of semantical representation. Even though some
linguists are in effect making this assumption, it is not at all obvious. It is not
difficult to devise a semantic representation for English quantifiers that does not
incorporate the ambiguity assumption and to formalize such a representation. In
philosophy, no thinker before the nineteenth century assumed the triple ambiguity
of verbs for being, that is, the alleged identity-predication-existence ambiguity.

One of the critical ingredients of first-order logic is the notion of the domain of
individuals. This is a genuine novelty of modern logic. Earlier logicians admittedly
used quantifiers, but for them these quantifiers were expressed by what Russell
called denoting phrases (like “some Greek” or “every European”) which meant
that each quantifier ranged only over a definite restricted class of values. In order
to understand such a denoting phrase, aka quantifier phrase, one did not have to
know what the entire universe of discourse was. This in effect made the notion
of a universe of discourse redundant. Moreover, for Aristotle, the idea of a mind-
independent universe of discourse would have not made any sense also because
he considered realizations of forms in the soul on a par with their realizations in
external reality.

Some philosophers have thought that there is only proper application of logic,
viz. the actual world. For them, the determination of the basic objects of reality
becomes a major philosophical problem. A more realistic view takes the appli-
cations of logic to concern sufficiently isolated parts of some actual or possible
world, in analogy with probability theorists’ sample space points or physicists’
“systems”. (See [Hintikka, 2003a].) Some philosophical logicians use chunks of
the actual world called “situations” as individuating applications of logic. (See
[Barwise, 1981; 1989].)

The truly important novelty of first-order logic (or more generally, logic of quan-
tifiers) does not lie in the ambiguity thesis, but in its power to express functional
dependencies (dependencies between variables). Indeed, the entire first-order logic
is equivalent with a quantifier-free system where all variables are universal and in
which the job of existential quantifiers is done by function constants.

12 THE MEANING OF QUANTIFIERS

But is first-order logic in its received form fully representative of what logic is? The
answer must turn on the meaning of the logical constants of first-order logic, es-
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pecially of quantifiers and of identity. The common assumption is that quantifiers
receive their meaning from their “ranging over” a class of values. An existential
quantifier (∃x) prefixed to an open formula F [x] says that the class of such values
x satisfying F [x] is not empty, and (∀x)F [x] says that all such values x satisfy
F [x]. This assumption is among others made by Frege, who proposed that quan-
tifiers be interpreted a higher-order predicates expressing the nonemptyness or
exceptionlessness of a lower-order predicate. This is admittedly an important part
of what quantifiers express. However, it is important to realize that quantifiers
have another semantical role. By means of the formal dependence of quantifier
of (Q2y) on (Q1x), we can express that the variable y depends on the variable x,
in the sense of concrete factual dependence. This function of quantifiers is highly
important, and it can be reduced to the “ranging over” idea only on restrictive
further conditions. (See here [Hintikka, 1996; 2002a].)

But how is the formal dependence of (Q2y) on (Q1x) expressed? In the received
logic, by the fact that (Q2y) occurs in the syntactical scope of (Q1x). Now in
the received first-order logic these scopes are assumed to be nested. Since this
nesting relation is transitive and antisymmetric, it cannot express all possible
patterns of dependence and independence between variables. Hence the received
first-order logic is not fully representative of the function of logical constants.
This representative role is best served by the result of removing the restrictions
on the patterns of formal dependence between quantifiers. The result is known
as independence-friendly (IF) logic. By the same token as the received first-order
logic used to be considered the core area of logic, IF logic must now be assigned
that role. If so, it is in fact terminologically misleading to use any qualifying
word in its name. It is the received first-order logic that deserves a special epithet
because of the limitations it is subject to. In spite of this inbuilt bias, the term
“IF logic” will be used in the following.

The semantics for this new basic logic is straightforward. The most central
semantical concept is that of truth. A first-order sentence is true when there exist
suitable “witness individuals” vouchsafing this truth. Thus e.g. (∃x)F [x] is true
if and only if there exists individual b satisfying F [x], and (∀x)(∃y)F [x, y] is true
if and only if for any individual a there exist b which together satisfy F [x, y]. As
the latter example shows, such witness individuals may depend on others. The
natural truth condition for a quantificational sentence S is therefore the existence
of all the functions which produce these witness individuals as their values. (In the
extreme case of initial existential quantifiers these functions become constants.)
These functions are known as Skolem functions, and the natural definition of truth
for S therefore requires the existence of a full array of Skolem functions for S. Such
arrays of Skolem functions can be interpreted as winning strategies in certain games
of verification and falsification called semantical games, thus throwing some light
on how language-world relations are implemented. This “game-theoretical” truth
definition is more elementary than Tarski-type ones.
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13 SEMANTICAL GAMES

This interpretation of the all-important Skolem functions as codifying winning
strategies in certain games opens interesting lines of thought concerning logic in
general. The games in question are called semantical games. (See [Hintikka, 1968;
Hintikka and Sandu, 1997].) The games in question are called semantical games.
Does this interpretation mean that logical theory is part and parcel of the general
theory of different kinds of games? The main answer is no. The reason is that the
range of games relevant to the semantics of logic is fairly restricted. As an example
we may consider how the information sets are determined that are presupposed
in semantical games. The information set of a player making the move connected
with a certain node of the game tree is the set of nodes in which the player in
question can be at that time to the best of that player’s knowledge. In semantical
games the only important information sets are those due to the relevant player’s
knowledge and ignorance of what has happened at earlier moves in the same play
of the game. Allowing such ignorance is the only thing needed to move from the
semantics of the received first-order logic to the semantics of IF first-order logic.

Semantical games admit in fact a simple interpretation. When there is perfect
information, such a game (for instance, the game G(S) connected with a sentence
S) can be thought of as a kind of game of verification and falsification, albeit not
in the most literal sense of the expressions. From the point of the verifier, it is
an attempt to find some of the “witness individuals” that would verify S. The
falsifier tries to make this task as hard as possible or even impossible. From this
idea, the game rules can be gathered without any difficulty. For instance, the first
move in G((∃x)F [x]) is the verifier’s choice of an individual a from the domain.
The game is then continued as in G(F [a]). The first move in G((S1&S2)) is the
falsifier’s choice of S1 or S2, say So. The game is then continued as in G(So).

Speaking of the verifier’s choice of an individual is somewhat misleading here,
for in an actual play of a game a successful move would require possibly quite
elaborate searching for a right individual. Hence semantical games can also be
considered as games of seeking a finding.

In spite of the natural structure of semantical games they are not devoid of
subtleties. The verifier wins a play of a semantical game if and only if the play
ends with a true atomic sentence. The falsifier wins if it ends up with a false
one. However, the truth of a sentence cannot be defined as the verifier’s win in
the game G(S). Rather, it must be defined as the existence of a winning strategy
for the verifier. This distinction can be compared with the distinction between a
sentence’s being verified and being verifiable.

A philosophical perspective is obtained here by considering semantical games
in the same way Wittgenstein considered his language-games, viz., as the basic
semantical links between language and reality. If this idea is combined with a
transcendental idea reminiscent mutatis mutandis of Kant, our knowledge of logic
an be thought of as knowledge the structure and characteristics of semantical
games. [Hintikka, 1973, chapter 5.]



26 Jaakko Hintikka and Gabriel Sandu

Be this as it may, game-theoretical semantics is thus a candidate for the role of a
semantical foundation of logic. In such a perspective, logic amounts to something
like the study of the structure of the language-games that connect language with
reality in the case of logical words.

The role of semantical games as the basic link between language and reality is
also illustrated by the fact that game-theoretical semantics can be used to interpret
some of the most prominent alternatives to the usual first-order logic. This can
happen by restricting the set of strategies that the verifier may use, which means
restricting the range of variables for Skolem functions. If they are restricted to
constructive functions, we obtain an interpretation of constructivistic logic. If they
were restricted to functions that are known in some reasonable sense, the result
should be an interpretation of intuitionistic logic.

Game-theoretical semantics thus suggests in any case interesting perspectives
relevant to the question, “What is logic?”

14 THE IMPLICATIONS OF INDEPENDENCE-FRIENDLY LOGIC:
AXIOMATIZABILITY

These suggestions are reinforced and made more specific by what happens in
the showcase of game-theoretical semantics, independence-friendly logic. As was
pointed out, Gödel’s completeness theorem for the received first-order logic en-
couraged the idea that our real basic logic is semantically complete. This in turn
led some thinkers to consider logic as a general study of formal systems.

If independence-friendly logic really is the authentic basic logic, such ideas must
be rejected. For independence-friendly logic is not complete in the sense of there
existing a formal proof procedure that in the limit produces all logical truths and
only them.

At first sight, the question of axiomatizability might seem to affect only the
computational implementation of different logics and more generally also of dif-
ferent mathematical theories. Such appearances notwithstanding, the question of
complete axiomatizability makes a difference to our ideas about the nature of logic
in relation to mathematics. The currently prevalent view seems to envisage an un-
derlying logic which is semantically complete but too weak to capture all modes
of mathematical reasoning. Hence the creative element in mathematics lies not
in logic, but in mathematics. Furthermore, stronger principles that are needed in
mathematical reasoning are typically thought of as new mathematical axioms, the
first place perhaps set-theoretical axioms.

This picture is now being challenged. The alternative view suggested by
independence-friendly logic is that a suitable logic can capture all the forms of
mathematical reasoning. (What this suitable logic might be is discussed later in
this article; see SS16–17.) This is connected with the fact that independence-
friendly logic incorporates several important modes of inference that were impos-
sible to express in the received first-order logic and likewise makes it possible to
capture mathematically important concepts that would not be defined in the earlier
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first-order logic. These concepts include equicardinality, infinity and topological
continuity. The modes of inference in question include the axiom of choice.

However, IF logic is not completely axiomatizable. Hence creativity is needed
for the discovery of increasingly intricate logical truths, and no longer a monopoly
of mathematicians as distinguished from logicians. This question affects our ideas
about the relation of mathematics and logic and hence our ideas about logic. An
important research project known as reverse mathematics is calculated to uncover
the set-theoretical assumptions on which different mathematical results are based.
(See [Friedman, 1970].) However, the main thrust of this project has been to ask
which sets have to exist for a mathematical proof to be able to go through rather
than to ask directly what stronger set-theoretical axioms are needed in the proofs.
Now the existence of a set implies the possibility of applying the logical principle
of tertium non datur to its definiens. Hence the project of reverse mathematics
can also be viewed as a study of what applications of logical principles like tertium
non datur are needed in actual mathematical proofs.

15 NEGATION AND ITS SIGNIFICANCE

Another feature of independence-friendly logic has likewise important implications
for our ideas about logic in general. This feature is the behavior of negation. (See
here [Hintikka, forthcoming (b)].) The semantical game rule (or rules) for negation
in independence-friendly logic are the same as in the received logic of quantifiers.
Yet the resulting negation turns out not to be the contradictory negation that
is often thought of as being the negation. Instead, we receive a stronger dual
negation that does not obey the law of excluded middle.

From a game-theoretical viewpoint this is only to be expected, for the law
of excluded middle amounts to assuming that semantical games are determinate.
And of course there are plenty of perfectly natural games that are not determinate.

Many philosophers will react to this by saying that what it shows is that inde-
pendence friendly logic is a “nonclassical” logic. But what is their criterion of a
logic’s being classical? In view of the “classical” character of the game rules for
negation in independence-friendly logic, it appears quite as natural to maintain
that this logic shows that the law of excluded middle is not part and parcel of the
classical conception of logic.

The absence of tertium non datur means that independence-friendly logic is in
some ways closer to intuitionistic logic than the received first-order logic, in spite
of its greater expressive power.

Of course we have to introduce also a contradictory negation ¬ into the
independence-friendly logic over and above the dual negation ∼ in order to reach
an adequate basic logic. The result will be called the extended independence-
friendly first-order logic. The contradictory negation cannot be characterized by
game rules however, for the “classical” ones yield the dual one. Hence ¬ can occur
in extended independence-friendly logic only sentence-initially.
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The extended independence-friendly logic has an interesting structure. Alge-
braically, it has the structure of a Boolean algebra with an operator in Tarski’s
sense. (See [Jónsson and Tarski, 1951; 1952].) In a sense, this structure is there-
fore the true algebra of logic. By Tarski’s results, the extended independence logic
admits to a set-theoretical (“geometrical”) interpretation. In this interpretation
the strong negation turns out to express a generalization of the notion of orthog-
onality. In terms of orthogonality, we can even define such notions as dimensions,
coordinate representation etc. for purely logical spaces. (See [Hintikka, 2004c;
forthcoming (b)].)

In sufficiently strong languages, there must thus be two different notions of
negation present, the strong dual negation and a contradictory one. This presum-
ably applied also to natural languages even though in them there usually is but
one grammatical construction for negation. This puts the notion of negation in
natural languages to a new light.

If we make suitable further assumptions concerning the logical spaces with two
negations, we obtain more elaborate algebraic structures which largely remain to
be examined. By using game-theoretical ideas, we can also introduce in a natural
way probability measures on logical spaces. Whether, and if so in what sense, this
makes probability a logical concept remains to be examined.

16 HIGHER-ORDER LOGICS

These developments throw new light also on second-order logic and other higher-
order logics. First, however, it is in order to see what these logics are like.

First-order logic is characterized by the fact that all quantifiers range over all the
individuals in the given universe of discourse. Second-order logic is obtained when
quantifiers are admitted that range over sets and other predicates-in-extension of
individuals. They are known as second-order quantifiers and their values second-
order entities. Third-order quantifiers range over sets and predicates-in-extensions
of second-order entities, and so on. Instead of such extensional entities, the con-
cepts that define them are sometimes employed in higher-order logics as values
of higher-order variables. We can thus distinguish extensional and intensional in-
terpretations of higher-order logics. When the different orders are separated from
each other, the result is also known as a theory of types in a broad sense.

Within extensionally construed higher-order logics we can distinguish two dif-
ferent interpretations. If the higher-order quantifiers range over all extensionally
possible entities of the appropriate lower type, we obtain what is known as the
standard interpretations. If they range over some designated subset of such en-
tities, we are dealing with a nonstandard interpretation. The most prominent
such nonstandard interpretation is the one in which higher-order quantifiers range
over entities definable in the language that is being used. Often, the term “non
standard interpretation” is restricted to this one.

The distinction was first formulated and the terms “standard” and “nonstandard”
introduced by Leon Henkin in 1950. However, the distinction was clear to Frank
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Ramsey who proposed transforming the intensional higher-order system of Rus-
sell’s and Whitehead’s Principia Mathematica into a form in which it can be given
a standard interpretation. (See [Ramsey, 1925].)

Even earlier, a special case of the standardness idea had played an important
role in the foundations of mathematics in the form of the notion of an arbitrary
function. The class of all such functions is nothing but the standard range of the
function variables of the appropriate type. The important development in the
history of mathematics of the idea of an arbitrary function is in effect the devel-
opment of the standard interpretation of function variables. Applied to functions
from natural numbers to integers the notion of arbitrary function becomes the
idea of an arbitrary sequence of integers that has played an important role in the
general theory of functions, especially in their representations as series of different
kinds.

For most mathematical conceptualizations and modes of reasoning, second-order
logic with standard interpretation is amply sufficient. Such a logic is not seman-
tically complete, however.

Higher-order logics are in a certain sense parallel to set theory. An axioma-
tized set theory is like a higher-order logic without type restrictions. The logical
principles that are normally used in set theory are those of first-order logic, not
of higher-order logic. The question of the adequacy of such first-order axioma-
tizations of set theory must still be considered as being open. (See [Hintikka,
forthcoming (a)].)

The difficulties in this direction are in the first instance due to the fact that
the standard interpretation cannot be imposed on the models of a system of set
theory by first-order axioms. Hence the idea of a model of an axiomatic first-order
set theory can be understood in two different ways. On one interpretation, the
would-be membership relation ∈ is interpreted like any first-order predicate. But
we can also require that it be actually interpreted as the membership relation.
One source of difficulties here is revealed by the question whether an axiomatic
set theory can have models that can be interpreted in the latter way even locally.

The question of the existence of higher-order entities depends on their mode
of existence and on their knowability (or lack thereof). Several philosophers have
been suspicious of such entities and would rather dispense with them altogether.
W.V. Quine among others has for this reason preferred set theory to higher-order
logic. This is a questionable position, however, for an attempt to interpret the
first-order quantifiers of an axiomatized set theory set-theoretically leads to serious
difficulties. (See [Hintikka, 2004a; forthcoming (a)].)

In any case, in either approach assumptions are needed that go beyond first-
order logic, either higher-order principles of reasoning or axioms of set existence.
A typical example is the axiom of choice which unsurprisingly has been a bone of
contention in the foundations of mathematics. Hilbert’s epsilon-calculus can be
viewed as a large-scale attempt to reduce the axiom of choice to the first-order
level. (See [Hilbert and Bernays, 1934–1939].)
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17 A DISTINCTION WITHOUT ONTOLOGICAL DIFFERENCE?

Certain recent advances in logic have disturbed the neat distinction between first-
order and higher-order logic, however. (See [Hintikka, forthcoming (b)].) For one
thing, independence-friendly logic captures on the first order level several impor-
tant concepts and modes of reasoning that earlier were thought of as being possible
to capture only by second-order means. As was noted they include the notions
of equicardinality and infinity, the axiom of choice, König’s lemma and topolog-
ical continuity. In the extended independence-friendly logic we can add to the
list among others the notions of well-ordering and mathematical induction. Their
availability means that we can on the first-order level (that is, without quantifying
over higher-order entities) carry out enormously more reasoning, including math-
ematical reasoning, than was previously thought of as being possible to do on this
level. Moreover, this is possible not only without quantifying over higher-order
entities but also without evoking the principle of excluded middle, in the sense
that this principle is not assumed in independence-friendly logic. However, there
are modes of logical reasoning that cannot be so captured and propositions that
cannot be expressed in extended independence-friendly logic. The prime exam-
ples are offered by prima facie propositions in which the contradictory negation
¬ occurs within the scope of a quantifier. Such formulas cannot be assigned an
interpretation by means of game-theoretical semantics. They can only be inter-
preted by reference to the totality of substitution-instances of their non-quantified
part, the substitution-values being of course the names of all the members of the
domain. When this domain is infinite, this involves an application of tertium non
datur to infinite sets as closed totalities. The resulting meanings are as a con-
sequence nonelementary (“infinitistic”) in a sense in which independence-friendly
logic is not. (Semantical games do not involve infinite sets as closed totalities.)

At the same time the resulting infinitistic logic is first-order in the sense that no
quantification over second-order or higher-order entities is involved. It nevertheless
turns out that the resulting logic — that is, extended independence-friendly logic
reinforced by contradictory negation which is allowed to occur within the scope
of quantifiers and moreover allowed to be arbitrarily nested — is as strong as the
entire second-order logic. Since second-order logic with standard interpretation is
as strong a logic as anybody is likely to need in science or classical mathematics,
it is thus seen that all logic we reasonably may need can be done ontologically
speaking on the first-order level. Quine has said that to be is to be a value of
a bound variable. If that is the case, we don’t need the existence of any second-
order (or other higher-order) entities. In any case it is true that we need not worry
about what the existence of higher-order entities means or which of them must be
assumed to exist.

Instead, what distinguishes the kind of reasoning that is now discussed in the
context of higher-order logics from elementary reasoning is the unrestricted use
of tertium non datur. Such use was in fact considered as the mark of infinitistic
reasoning by the likes of David Hilbert and L.E.J. Brouwer [1923]. Whether this
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means that the contrast between first-order logic and higher-order logic disappears
is a mere matter of terminological preference.

18 ALTERNATIVE LOGICS?

All this leaves in the dark the status of the many “alternative logics” that have
sprung up in recent years. (See [van Benthem, forthcoming; Ginsberg 1987].) Since
they are typically non-monotonic, they cannot be truth-preserving or deductive.
But if so, how can they be claimed to be alternative to the traditional systemati-
zations of deductive logic? And if they embody ampliative inference, what is the
new information that is brought in and where does it come from? And if they are
(as inductive logic was argued to be) dependent on unspoken assumptions, what
are those assumptions?

In order to answer such questions, we can consider as an example one of the
most clear-cut “alternative logics”, developed initially by John McCarthy [1980]
and called “inference by circumscription”. Its basic idea is clear. The inferences
considered in the theory of circumscriptive inference are based not only on their
explicit premises in the usual sense, but also on the tacit assumption that these
premises constitute all the relevant information. It is amply clear that such in-
ferences are common in ordinary discourse. It is also amply clear that such tacit
assumptions of exhaustive relevance are not unavoidable. For instance, a typical
tactic in solving run-of-the-mill recreational puzzles is to bring in information that
is not contained in the given premises. However, there are no overwhelming reasons
in evidence to show that the reasoning itself that is required for circumscriptive
inference is different from our ordinary ways of reasoning. Hence it seems that we
can simply pidgeonhole circumscriptive inference as a chapter in the theory of en-
thymemic reasoning, that is, in the theory of reasoning from partly tacit premises.
And if so, circumscriptive inference can scarcely be claimed to be alternative to
our normal logical inferences — or so it seems.

However, this is not the end of the story. The most important peculiarity of
the tacit circumscriptive assumption is that it is not expressible in the language
in which the inferences are carried out. This language is normally some familiar
logical one not unlike a first-order language. However, the exhaustiveness of the
given premises obviously cannot be expressed in such a language.

This shows both the interest of circumscriptive inference and the equivocal
status of an attempt to formulate such inferences on a first-order level. The theo-
retically satisfactory approach would be to develop a logical language in which the
tacit premise can be explicitly formulated. Only then could it be decided whether
inferences from such premises require a logic different from our well-known modes
of inference. It is also reasonable to expect that the logic of such richer languages
would be an extension of, rather than an alternative to, the established logics

One can in fact view many other kinds of ampliative reasoning in the same
way. This provides an interesting perspective on a number of “alternative logics”.
And this perspective is not restricted to recently developed “alternative logics”.
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The hidden assumptions on which applications of inductive logic can be argued to
depend cannot be formulated in first-order languages even after simple probability
measures are added to it. The theoretical situation hence seems to be the same
as in the logic of circumscription, even though no one has tried to label inductive
logic an “alternative” logic.

Similar situations occur also in mathematics. An interesting example is offered
by maximality assumptions. Hilbert tried to make his axiomatization of geom-
etry categorical by means of a maximality assumption that he called the axiom
of completeness. ([Hilbert, 1899]; this axiom was actually introduced only in the
second edition.) Gödel surmised that maximality assumptions not unlike Hilbert’s
axiom are what is needed in axiomatic set theory. Such assumptions are neverthe-
less hard to express in the usual logical languages like first-order languages. The
reason is that the propositions of such a language work by imposing conditions
on their models one model at the time, whereas maximality assumptions involve
comparisons of different models with each other. This situation differs from the
alternative logics in that Hilbert tried to formulate the additional axiom explicitly.
However, such a formulation is impossible on the level on which most of the other
reasoning is in Hilbert’s book.

One can perhaps view first-order axiomatic set theory in the same light. The
logic used there is precisely the traditional first-order logic. However, the charac-
teristically set-theoretical modes of inference, such as the axiom of choice, cannot
be adequately captured in traditional first-order logic. Hence the set theory in-
corporates only Ersatz versions of these principles of inference in the forms of
axioms.

Why have logicians not developed richer languages in which such tacit assump-
tions could be expressed explicitly? Part of an answer was in the difficulty of such
an enterprise. But perhaps part of the reason is that logicians have entertained
too narrow a conception of what logic is. For one cannot help suspecting that
somehow logicians have assumed that the familiar languages like first-order lan-
guages are capable of expressing all logical inferences. If so, we have here a telling
example of the hegemony of traditional first-order logic as an answer to the title
question of this article. Even logics that are calculated to be alternatives to the
traditional first-order logic have been unwittingly colored by a belief in its unique
role.

It nevertheless appears that the right project is to develop richer logical lan-
guages rather than devise different sets of special-interest modes of reasoning. If
and when this is done, the result is likely to be a richer idea of what logic is – or
of what it can be.

19 AMPLIATIVE INFERENCE AND ACQUISITION OF INFORMATION

In a different direction one can still ask for a unified perspective on ampliative
inference. Such an overview on nondeductive inference must be connected with
the notion of information, for the greatest common denominator of all ampliative



What is Logic? 33

inferences is that new information enters into an ongoing argument. A general
theory of such inferences will have to focus on the source of the new informa-
tion in comparison with alternative sources. For one thing, the reliability of the
new information depends on the reliability of its source. Likewise, the evaluation
of a new item of information depends on a comparison with the other items of
information that might have been available instead of the actually introduced one.

One way of trying to reach such a general theory is to consider the reception of
any new items of information as an answer to a (usually tacit) question. Indeed,
if we know the source of an item of information and know what other items might
be available from the same source or from others, etc., we conceptually speaking
might as well consider such acquisition of the information as the reception of an
answer to a question. From such a point of view, the theory of questions and
answers assumes the role of a general framework for different kinds of ampliative
inference. (See [Hintikka, 1999; Hintikka, Halonen and Mutanen, 1999].)

The theory of questions and answers is in turn based on epistemic logic, for a
question is essentially a request of information [Hintikka, 1976; 2003b]. As was
indicated in §3 above, a suitable interrogative logic can be developed as being
determined largely as the logic of the declarative propositions that specify the
epistemic state of affairs that a questioner asks to be brought about. Such a
proposition is called the desideratum of the question in question. Needless to say,
both the notion of a question and the idea of a source of answers must then be
taken in a very general sense. The answerer need not be a human being or a
database. It can be nature, one’s environment, memory or even a questioner’s
imagination. Likewise, the act of asking a question may for instance take the form
of an experiment or observation, or perhaps even a guess.

Such an “interrogative model of inquiry”, as it has been called, is especially
useful in the study of the strategic aspects of information seeking. For such a
search amounts to a question-answer sequence interspersed naturally by deductive
inferences. Strategies of inquiry will then amount to different methods of choosing
the questions. The possibilities of theorizing opened by this perspective have
not yet been used very widely. It is nevertheless clear that for instance some of
the traditional “fallacies” are not breaches of the definitory rules of inference but
violations of the reasonable principle of questioning, among them the so-called
fallacy of petitio principii. (Cf. [Hamblin, 1970; Hintikka, 1987].)

Such interrogative inquiry is more closely related to the theory of the deduc-
tive inference than perhaps first meets the eye. This relationship in fact throws
interesting light on the nature of logic in general. Formally, interrogative inquiry
is partly analogous to deductive inquiry. In order to be in a position to ask a
question, an inquirer must have established its presupposition. A step from the
presupposition of a question to its answer (whenever available) is formally similar
to a step from the premise (or premises) of a deductive inference to its conclusion.
As a consequence, strategies of questioning govern the choices of presuppositions
from the set of available propositions while strategies of deduction govern the
choices of premises from the same pool of propositions.
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In neither case can the optimal strategies be expressed in the form of recursive
(mechanical) rules. However, there is a deep connection between the two kinds
of strategies. In a context of pure discovery, that is, when all available answers
are true and known to be true, the optimal strategies of interrogative inquiry
coincide with the optimal strategies of deductions except for deviations caused by
the possible unavailability of some answers. (Actually, another discrepancy may
arise when the answers happen to deal with previously known entities.)

In other (somewhat looser) words, in a context of pure discovery interrogative
inquiry is guided in effect by the same strategies as deduction. This result throws
important light on what logic in general is, in particular what the place of deductive
logic is in a wider schema of epistemological ideas. It suggests looking at deductive
logic as a kind of systematic study a priori of what can happen in an actual
empirical enterprise of information acquisition. It also goes a long way toward
vindicating the old and still “Sherlock Holmes view” of logic as the gist of all
good reasoning mentioned in §1 above. More generally speaking, it shows the
relationship between deductive and ampliative reasoning.
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Birkhäusen Verlag, 1986a.



What is Logic? 39

[Tarski, 1986b] A. Tarski. What are logical notions? History and Philosophy of Logic, 7: 143-
154, 1986b (original 1966).

[Tharp, 1975] L. Tharp. Which logic is the right logic? Synthese, 31: 1-21, 1975.
[van Benthem, 1982] J. van Benthem. The Logic of Time. Dordrecht: D. Reidel, 1982.
[van Benthem, 2001] J. van Benthem. Correspondence Theory. In D. Gabbay and F. Guenthner,

(eds.), Handbook of Philosophical Logic III, second edition, Dordrecht: Kluwer Academic,
2001.

[van Benthem, forthcoming] J. van Benthem. Introduction. In J. van Benthem et al. (eds.), The
Age of Alternative Logics. Forthcoming.

[van Heijenoort, 1967a] J. van Heijenoort (ed.), From Frege to Gödel: A Source Book In Math-
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