Symposium on the foundations
of mathematics

1. The logicist foundations of mathematics
RUDOLF CARNAP

The problem of the logical and epistemological foundations of mathe-
matics has not yet been completely solved. This problem vitally concerns
both mathematicians and philosophers, for any uncertainty in the foun-
dations of the ‘‘most certain of all the sciences’’ is extremely disconcert-
ing. Of the various attempts already made to solve the problem none can
be said to have resolved every difficulty. These efforts, the leading ideas
of which will be presented in these three papers, have taken essentially
three directions: Logicism, the chief proponent of which is Russell; Intui-
tionism, advocated by Brouwer; and Hilbert’s Formalism.

Since I wish to draw you a rough sketch of the salient features of the
logicist construction of mathematics, I think I should not only point out
those areas in which the logicist program has been completely or at least
partly successful but also call attention to the difficulties peculiar to this
approach. One of the most important questions for the foundations of
mathematics is that of the relation between mathematics and logic.
Logicism is the thesis that mathematics is reducible to logic, hence nothing
but a part of logic. Frege was the first to espouse this view (1884). In their
great work, Principia Mathematica, the English mathematicians A. N.
Whitehead and B. Russell produced a systematization of logic from which
they constructed mathematics.

We will split the logicist thesis into two parts for separate discussion:

. The concepts of mathematics can be derived from logical concepts

through explicit definitions.

2. The theorems of mathematics can be derived from logical axioms

through purely logical deduction.

1. The derivation of mathematical concepts

To make precise the thesis that the concepts of mathematics are derivable
from logical concepts, we must specify the logical concepts to be employed
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in the derivation. They are the following: In propositional calculus,
which deals with the relations between unanalyzed sentences, the most
important concepts are: the negation of a sentence p, ‘not-p’ (symbolized
‘~p’); the disjunction of two sentences, ‘p or @’ (‘pV q’); the conjunc-
tion, ‘p and ¢’ (‘p-q’); and the implication, ‘if p, then ¢’ (‘pD>¢q’). The
concepts of functional calculus are given in the form of functions, e.g.,
‘f(a)’ (read ‘f of a') signifies that the property f belongs to the object a.
The most important concepts of functional calculus are universality and
existence: ‘(x)f(x)’ (read ‘for every x, f of x’) means that the property f
belongs to every object; ‘(3x)f(x)’ (read ‘there is an x such that f of x°)
means that f belongs to at least one object. Finally there is the concept of
identity: ‘a=)’ means that ‘a’ and ‘b’ are names of the same object.

Not all these concepts need be taken as undefined or primitive, for
some of them are reducible to others. For example, ‘p v ¢’ can be defined
as ‘~(~p-~q)’and ‘(3x) f(x) as ‘~ (x) ~f(x)". It is the logicist thesis,
then, that the logical concepts just given suffice to define all mathemati-
cal concepts, that over and above them no specifically mathematical con-
cepts are required for the construction of mathematics.

Already before Frege, mathematicians in their investigations of the
interdependence of mathematical concepts had shown, though often with-
out being able to provide precise definitions, that all the concepts of arith-
metic are reducible to the natural numbers (i.e., the numbers 1,2, 3, ...
which are used in ordinary counting). Accordingly, the main problem
which remained for logicism was to derive the natural numbers from logi-
cal concepts. Although Frege had already found a solution to this prob-
lem, Russell and Whitehead reached the same results independently of
him and were subsequently the first to recognize the agreement of their
work with Frege’s. The crux of this solution is the correct recoghition of
the logical status of the natural numbers; they are logical attributes
wh'ich belong, not to things, but to concepts. That a certain number, say
3, is the number of a concept means that three objects fall under it. We
can express the very same thing with the help of the logical concepts pre-
Viously given. For example, let ‘2, (f)’ mean that at least two objects fall
under the concept f. Then we can define this concept as follows (where
‘=p¢’ is the symbol for definition, read as ‘‘means by definition’’):

2 (N =pr (3X)(3Y)[ ~ (x=y) - f(x) )]

or in words: there is an x and there is a ysuch that x is not identical with y
and fbelongs to x and f belongs to y. In like manner, we define 3

4,
and so on. Then we define the number two itself thus: "

z(f)zbfzm(f)' ~3In(N)
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or in words: at least two, but not at least three, objects fall under f. We can
also define arithmetical operations quite easily. For example, we can
define addition with the help of the disjunction of two mutually exclusive
concepts. Furthermore, we can define the concept of natural number itself.

The derivation of the other kinds of number - i.e., the positive and
negative numbers, the fractions, the real and the complex numbers - is
accomplished, not in the usual way by adding to the domain of the
natural numbers, but by the construction of a completely new domain.
The natural numbers do not constitute a subset of the fractions but are
merely correlated in obvious fashion with certain fractions. Thus the
natural number 3 and the fraction 3/1 are not identical but merely cor-
related with one another. Similarly we must distinguish the fraction 1/2
from the real number correlated with it. In this paper, we will treat only
the definition of the real numbers. Unlike the derivations of the other
kinds of numbers which encounter no great difficulties, the derivation of
the real numbers presents problems which, it must be admitted, neither
logicism, intuitionism, nor formalism has altogether overcome.

Let us assume that we have already constructed the series of fractions
(ordered according to magnitude). Our task, then, is to supply defini-
tions of the real numbers based on this series. Some of the real numbers,
the rationals, correspond in obvious fashion to fractions; the rest, the ir-
rationals, correspond as Dedekind showed (1872) to ‘‘gaps’’ in the series
of fractions. Suppose, for example, that we divide the (positive) fractions
into two classes, the class of all whose square is less than 2, and the class
comprising all the rest of the fractions. This division forms a “cut” in the
series of fractions which corresponds to the irrational real number V2.
This cut is called a *‘gap"’ since there is no fraction correlated with it. As
there is no fraction whose square is two, the first or “lower” class contains
no greatest member, and the second or “upper” class contains no least
member, Hence, to every real number there corresponds a cut in the series
of fractions, each irrational real number being correlated with a gap.

Russell developed further Dedekind’s line of thought. Since a cut is
uniquely determined by its ‘‘lower”’ class, Russell defined a real number
as the lower class of the corresponding cut in the series of fractions. For
example, V2 is defined as the class (or property) of those fractions whose
square is less than two, and the rational real number 1/3 is defined as the
class of all fractions smaller than the fraction 1/3. On the basis of these
definitions, the entire arithmetic of the real numbers can be developed.
This development, however, runs up against certain difficulties con-
nected with so-called ‘‘impredicative definition,”’ which we will discuss
shortly.

The essential point of this method of introducing the real numbers is
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that they are not postulated but constructed. The logicist does not estab-
lish the existence of structures which have the properties of the real num-
bers by laying down axioms or postulates; rather, through explicit defini-
tions, he produces logical constructions that have, by virtue of these defi-
nitions, the usual properties of the real numbers. As there are no “‘crea-
tive definitions,”” definition is not creation but only name-giving to
something whose existence has already been established.

In similarly constructivistic fashion, the logicist introduces the rest of
the concepts of mathematics, those of analysis {(e.g., convergence, limit,
continuity, differential, quotient, integral, etc.) and also those of set
theory (notably the concepts of the transfinite cardinal and ordinal num-
bers). This “‘constructivist’ method forms part of the very texture of
logicism.

II. The derivation of the theorems of mathematics

The second thesis of logicism is that the theorems of mathematics are
derivable from logical axioms through logical deduction. The requisite
system of logical axioms, obtained by simplifying Russell’s system, con-
tains four axioms of propositional calculus and two of functional calcu-
lus. The rules of inference are a rule of substitution and a rule of implica-
tion (the modus ponens of ancient logic). Hilbert and Ackermann have
used these same axioms and rules of inference in their system.

Mathematical predicates are introduced by explicit definitions. Since
an explicit definition is nothing but a convention to employ a new, usu-
ally much shorter, way of writing something, the definiens or the new
way of writing it can always be eliminated. Therefore, as every sentence
of mathematics can be translated into a sentence which contains only the
primitive logical predicates already mentioned, this second thesis can be
restated thus: Every provable mathematical sentence is transiatable into
a sentence which contains only primitive logical symbols and which is
provable in logic.

But the derivation of the theorems of mathematics poses certain diffi-
cu_lties fqr logicism. In the first place it turns out that some theorems of
ant.hmetlc and set theory, if interpreted in the usual way, require for
their proof besides the logical axioms still other special axioms known as
the axiom of infinity and the axiom of choice (or multiplicative axiom).
The axiom of infinity states that for every natural number there is a
greater one. The axiom of choice states that for every set of disjoint non-
empty sets, there is (at least) one selection-set, i.e., a set that has exactly
one member in common with each of the member sets. But we are not
concerned here with the content of these axioms but with their logical
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character. Both are existential sentences. Hence, Russell was right in hes-
itating to present them as logical axioms, for logic deals only with pos-
sible entities and cannot make assertions about whether something does
or does not exist. Russell found a way out of this difficuity. He reasoned
that since mathematics was also a purely formal science, it too could
make only conditional, not categorical, statements about existence: if
certain structures exist, then there also exist certain other structures
whose existence follows logically from the existence of the former. For
this reason he transformed a mathematical sentence, say S, the proof of
which required the axiom of infinity, £, or the axiom of choice, C, into a
conditional sentence; hence S is taken to assert not S, but />S5 or COS,
respectively. This conditional sentence is then derivable from the axioms
of logic.

A greater difficulty, perhaps the greatest difficulty, in the construction
of mathematics has to do with another axiom posited by Russell, the so-
called axiom of reducibility, which has justly become the main bone of
contention for the critics of the system of Principia Mathematica. We
agree with the opponents of logicism that it is inadmissible to take it as
an axiom. As we will discuss more fully later, the gap created by the
removal of this axiom has certainly not yet been filled in an entirely satis-
factory way. This difficulty is bound up with Russell’s theory of types
which we shall now briefly discuss.

We must distinguish between a ‘‘simple theory of types’’ and a *‘rami-
fied theory of types.”’ The latter was developed by Russell but later recog-
nized by Ramsey to be an unnecessary complication of the former. If, for
the sake of simplicity, we restrict our attention to one-place functions
(properties) and abstract from many-place functions (relations), then
type theory consists in the following classification of expressions into dif-
ferent “'types’’: To type 0 belong the names of the objects (*‘individ-
uals’’) of the domain of discourse (e.8., @, b,...). To type | belong the
properties of these objects (e.8., f(a),&(a),...). To type 2 belong the
properties of these properties (e.g., F(f),G(f),...); for example, the
concept 2(f) defined above belongs to this type. To type 3 belong the
properties of properties of properties, and so on. The basic rule of type
theory is that every predicate belongs to a determinate type and can be
meaningfully applied only to expressions of the next lower type. Accord-
ingly, sentences of the form f(a), F(f), 2(f) are always meaningful, i.e.,
either true or false; on the other hand combinations like f(g) and f(F)
are neither true nor false but meaningless. In particular, expressions like
Sf(f) or ~f(f) are meaningless, i.e., we cannot meaningfully say of a
property either that it belongs to itself or that it does not. As we shall see,
this last result is important for the elimination of the antinomies.
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This completes our outline of the simple theory of types, which most
proponents of modern logic consider legitimate and necessary. In his sys-
tem, Russell introduced the ramified theory of types, which has not
found much acceptance. In this theory the properties of each type are
further subdivided into “‘orders.’’ This division is based, not on the kind
of objects to which the property belongs, but on the form of the defini-
tion which introduces it. Later we shall consider the reasons why Russell
believed this further ramification necessary. Because of the introduction
of the ramified theory of types, certain difficulties arose in the construc-
tion of mathematics, especially in the theory of real numbers. Many
fundamental theorems not only could not be proved but could not even
be expressed. To overcome this difficulty, Russell had to use brute force;
i.e., he introduced the axiom of reducibility by means of which the dif-
ferent orders of a type could be reduced in certain respects to the lowest
order of the type. The sole justification for this axiom was the fact that
there seemed to be no other way out of this particular difficulty engen-
dered by the ramified theory of types. Later Russell himself, influenced
by Wittgenstein’s sharp criticism, abandoned the axiom of reducibility in
the second edition of Principia Mathematica (1925). But, as he still
believed that one could not get along without the ramified theory of
types, he despaired of the situation. Thus we see how important it would
be, not only for logicism but for any attempt to solve the problems of the
foundations of mathematics, to show that the simple theory of types is
sufficient for the construction of mathematics out of logic. A young
English mathematician and pupil of Russell, Ramsey (who unfortunately

died this year, i.e., 1930), in 1926 made some efforts in this direction
which we will discuss later.

I11. The problem of impredicative definition

To ascertain whether the simple theory of types is sufficient or must be
further ramified, we must first of all examine the reasons which induced
Russell to adopt this ramification in spite of its most undesirable conse-
gue{lces. There were two closely connected reasons: the necessity of elim-
Inating the logical antinomies and the so-called “vicious circle” principle.
We call ““logical antinomies’ the contradictions which first appeared in
set theory (as so-called ‘‘paradoxes’’) but which Russell showed to be
COI{]IT']OH to all logic. It can be shown that these contradictions arise in
logic if the theory of types is not presupposed. The simplest antinomy is
fhat of tl}e concept ““‘impredicable.”” By definition a property is ‘‘impred-
icable”” if it does not belong to itself. Now is the property ‘‘impredi-
cable’ itself impredicable? If we assume that it is, then since it belongs to
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itself it would be, according to the definition of ‘‘impredicable,’’ not im-
predicable. If we assume that it is not impredicable, then it does not
belong to itself and hence, according to the definition of ‘‘impredi-
cable,” is impredicable. According to the law of excluded middle, it is
either impredicable or not, but both alternatives lead to a contradiction.
Another example is Grelling’s antinomy of the concept ‘‘heterological.”
Except that it concerns predicates rather than properties, this antinomy is
completely analogous to the one just described. By definition, a predi-
cate is “‘heterological’’ if the property designated by the predicate does
not belong to the predicate itself. (For example, the word ‘monosyllabic’
is heterological, for the word itself is not monosyllabic.) Obviously both
the assumption that the word ‘heterological’ is itself heterological as well
as the opposite assumption lead to a contradiction. Russell and other
logicians have constructed numerous antinomies of this kind.

Ramsey has shown that there are two completely different kinds of
antinomies. Those belonging to the first kind can be expressed in logical
symbols and are called ‘“logical antinomies’’ (in the narrower sense). The
“impredicable’”’ antinomy is of this kind. Ramsey has shown that this
kind of antinomy is eliminated by the simple theory of types. The con-
cept ‘‘impredicable,” for example, cannot even be defined if the simple
theory of types is presupposed, for an expression of the form, a property
does not belong to itself (~f(f)), is not well-formed, and meaningless
according to that theory.

Antinomies of the second kind are known as ‘‘semantical’’ or *‘epis-
temological”’ antinomies. They include our previous example, ‘‘hetero-
logical,” as well as the antinomy, well-known to mathematicians, of the
smallest natural number which cannot be defined in German with fewer
than 100 letters. Ramsey has shown that antinomies of this second kind
cannot be constructed in the symbolic language of logic and therefore
need not be taken into account in the construction of mathematics from
logic. The fact that they appear in word languages led Russell to impose
certain restrictions on logic in order to eliminate them, viz., the ramified
theory of types. But perhaps their appearance is due to some defect of
our ordinary word language.

Since antinomies of the first kind are already eliminated by the simple
theory of types and those of the second kind do not appear in logic,
Ramsey declared that the ramified theory of types and hence also the
axiom of reducibility were superfluous.

Now what about Russell’s second reason for ramifying the theory of
types, viz., the vicious circle principle? This principle, that ““no whole
may contain parts which are definable only in terms of that whole’’, may
also be called an ‘‘injunction against impredicative definition.”’ A defini-
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tion is said to be ‘‘impredicative’’ if it defines a concept in terms of a
totality to which the concept belongs. (The concept ‘‘impredicative’” has
nothing to do with the aforementioned pseudo concept ‘‘impredicable.’’)
Russell’s main reason for laying down this injunction was his belief that
antinomies arise when it is violated. From a somewhat different stand-
point Poincaré before, and Weyl after, Russell also rejected impredica-
tive definition. They pointed out that an impredicatively defined concept
was meaningless because of the circularity in its definition. An example
will perhaps make the matter clearer:

We can define the concept *‘inductive number’” (which corresponds to
the concept of natural number including zero) as follows: A number is
said to be ‘‘inductive” if it possesses all the hereditary properties of zero.
A property is said to be ‘‘hereditary’” if it always belongs to the number
n+1 whenever it belongs to the number n. In symbols,

Ind (x) =p¢ (f) [(Her(f)- £(0)) D f(x)]

To show that this definition is circular and useless, one usually argues as
follows: In the definiens the expression ‘(f)’ occurs, i.e., **for all proper-
ties (of numbers)”. But since the property ‘‘inductive’ belongs to the
class of all properties, the very property to be defined already occurs in a
hidden way in the definiens and thus is to be defined in terms of itself, an
obviously inadmissible procedure. It is sometimes claimed that the mean-
inglessness of an impredicatively defined concept is seen most clearly if
one tries to establish whether the concept holds in an individual case. For
example, to ascertain whether the number three is inductive, we must,
according to the definition, investigate whether every property which is
hereditary and belongs to zero also belongs to three. But if we must do
this for every property, we must also do it for the property *‘inductive’’
which is also a property of numbers. Therefore, in order to determine
whether the number three is inductive, we must determine among other
things whether the property *‘inductive’’ is hereditary, whether it belongs
to zero, and finally - this is the crucial point - whether it belongs to three.
But this means that it would be impossible to determine whether three is
an inductive number.

Before we consider how Ramsey tried to refute this line of thought, we
must get clear about how these considerations led Russell to the ramified
the9ry of types. Russell reasoned in this way: Since it is inadmissible to
c!efme a property in terms of an expression which refers to ‘‘all proper-
ties,”” we must subdivide the properties (of type 1): To the *‘first order’’
belong those properties in whose definition the expression ‘all properties’
does n(?t occur; to the ‘‘second order” those in whose definition the
expression ‘all properties of the first order’ occurs; to the “‘third order”
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those in whose definition the expression ‘all properties of the second
order’ occurs, and so on. Since the expression ‘all properties’ without
reference to a determinate order is held to be inadmissible, there never
occurs in the definition of a property a totality to which it itself belongs.
The property “‘inductive,”” for example, is defined in this no longer im-
predicative way: A number is said to be ‘‘inductive’” if it possess all the
hereditary properties of the first order which belong to zero.

But the ramified theory of types gives rise to formidable difficulties in
the treatment of the real numbers. As we have already seen, a real num-
ber is defined as a class, or what comes to the same thing, as a property
of fractions. For example, we say that V2 is defined as the class or
property of those fractions whose square is less than two. But since the
expression ‘for all properties’ without reference to a determinate order is
inadmissible under the ramified theory of types, the expression ‘for all
real numbers’ cannot refer to all real numbers without qualification but
only to the real numbers of a determinate order. To the first order belong
those real numbers in whose definition an expression of the form ‘for all
real numbers’ does not occur; to the second order belong those in whose
definition such an expression occurs, but this expression must be restricted
to “‘all real numbers of the first order,”” and so on. Thus there can be
neither an admissible definition nor an admissible sentence which refers
to all real numbers without qualification.

But as a consequence of this ramification, many of the most important
definitions and theorems of real number theory are lost. Once Russell
had recognized that his earlier attempt to overcome it, viz., the introduc-
tion of the axiom of reducibility, was itself inadmissible, he saw no way
out of this difficulty. The most difficult problem confronting contem-
porary studies in the foundations of mathematics is this: How can we
develop logic if, on the one hand, we are to avoid the danger of the
meaninglessness of impredicative definitions and, on the other hand, are
to reconstruct satisfactorily the theory of real numbers?

1V. Attempt at a solution

Ramsey (1926a) outlined a construction of mathematics in which he
courageously tried to resolve this difficulty by declaring the forbidden
impredicative definitions to be perfectly admissible. They contain, he
contended, a circle but the circle is harmless, not vicious. Consider, he
said, the description ‘the tallest man in this room’. Here we describe
something in terms of a totality to which it itself belongs. Still no one
thinks this description inadmissible since the person described already
exists and is only singled out, not created, by the description. Ramsey
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believed that the same considerations applied to properties. The totality
of properties already exists in itself. That we men are finite beings who
cannot name individually each of infinitely many properties but can
describe some of them only with reference to the totality of all properties
is an empirical fact that has nothing to do with logic. For these reasons
Ramsey allows impredicative definition. Consequently, he can both get
along with the simple theory of types and still retain all the requisite
mathematical definitions, particularly those needed for the theory of the
real numbers.

Although this happy result is certainly tempting, 1 think we should not
let ourselves be seduced by it into accepting Ramsey’s basic premise; viz.,
that the totality of properties already exists before their characterization
by definition. Such a conception, I believe, is not far removed from a
belief in a platonic realm of ideas which exist in themselves, indepen-
dently of if and how finite human beings are able to think them. I think
we ought to hold fast to Frege’s dictum that, in mathematics, only that
may be taken to exist whose existence has been proved (and he meant
proved in finitely many steps). I agree with the intuitionists that the
finiteness of every logical-mathematical operation, proof, and definition
is not required because of some accidental empirical fact about man but
is required by the very nature of the subject. Because of this attitude,
intuitionist mathematics has been called “anthropological mathematics.”
It seems to me that, by analogy, we should call Ramsey’s mathematics
“theological mathematics,”” for when he speaks of the totality of prop-
erties he elevates himself above the actually knowable and definable and
in certain respects reasons from the standpoint of an infinite mind which
ist not bound by the wretched necessity of building every structure step by
step.

We may now rephrase our cruclal question thus: Can we have Ram-
sey‘s result without retaining hls absolutlst conceptions? Hls result was
tr'u.s: Limitation to the simple theory of types and retention of the possi-
bility of definitions for mathematical concepts, particularly in real num-
b'er theor)f.'We can reach this result if, like Ramsey, we allow impredica-
tive def'“mmon, but can we do this without falling into his conceptual
absolutism? I will try to give an affirmative answer to this question.

Let us go.back to the example of the property ““inductive’” for which
we gave an impredicative definition:

Ind(X)=m(f)[(Her(f)-f(0))Df(x)]

I:et.us examine once again whether the use of this definition, i.e., estab-
lishing whether the concept holds in an individual case or not, really
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leads to circularity and is therefore impossible. According to this defini-
tion, that the number two is inductive means:

N I(Her(f)-f(0))D£(2)]

in words: Every property f which is hereditary and belongs to zero be-
longs also to two. How can we verify a universal statement of this kind?
If we had to examine every single property, an unbreakable circle would
indeed result, for then we would run headlong against the property
‘“‘inductive.”” Establishing whether something had it would then be im-
possible in principle, and the concept would therefore be meaningless.
But the verification of a universal logical or mathematical sentence does
not consist in running through a series of individual cases, for impredica-
tive definitions usually refer to infinite totalities. The belief that we must
run through all the individual cases rests on a confusion of ‘‘numerical’’
generality, which refers to objects already given, with *‘specific’’ general-
ity (cf. Kaufmann 1930). We do not establish specific generality by run-
ning through individual cases but by logically deriving certain properties
from certain others. In our example, that the number two is inductive
means that the property ‘“‘belonging to two’’ follows logically from the
property ‘‘being hereditary and belonging to zero.”’ In symbols, ‘f(2)’
can be derived for an arbitrary f from ‘Her(f)-f(0)’ by logical opera-
tions. This is indeed the case. First, the derivation of ‘f(0)’ from
‘Her(f)-f(0) is trivial and proves the inductiveness of the number
zero. The remaining steps are based on the definition of the concept
“‘hereditary’’:

Her(f) =pr(m)[f(n) DS (n+1)]

Using this definition, we can easily show that /(0+1)’ and hence /(1)
are derivable from *Her (/) f(0)' and thereby prove that the number one
is inductive, Using this result and our definition, we can derive f(1+1)’
and hence ‘/(2)’ from ‘Her(f)-f(0)’, thereby showing that the number
two is inductive. We see then that the definition of inductiveness,
although impredicative, does not hinder its utility. That proofs that the
defined property obtains (or does not obtain) in individual cases can be
given shows that the definition is meaningful. If we reject the belief that
it is necessary to run through individual cases and rather make it clear to
ourselves that the complete verification of a statement about an arbitrary
property means nothing more than its logical (more exactly, tautological)
validity for an arbitrary property, we will come to the conclusion that im-
predicative definitions are logically admissible. If a property is defined im-
predicatively, then establishing whether or not it obtains in an individual
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case may, under certain circumstances, be difficult, or it may even be
impossible if there is no solution to the decision problem for that logical
system. But in no way does impredicativeness make such decisions
impossible in principle for all cases. If the theory just sketched proves
feasible, logicism will have been helped over its greatest difficulty, which
consists in steering a safe course between the Scylla of the axiom of
reducibility and the Charybdis of the allocation of the real numbers to
different orders.

Logicism as here described has several features in common both with
intuitionism and with formalism. It shares with intuitionism a construc-
tivistic tendency with respect to definition, a tendency which Frege also
emphatically endorsed. A concept may not be introduced axiomatically
but must be constructed from undefined, primitive concepts step by step
through explicit definitions. The admission of impredicative definitions
seems at first glance to run counter to this tendency, but this is only true
for constructions of the form proposed by Ramsey. Like the intuition-
ists, we recognize as properties only those expressions (more precisely,
expressions of the form of a sentence containing one free variable) which
are constructed in finitely many steps from undefined primitive properties
of the appropriate domain according to determinate rules of construc-
tion. The difference between us lies in the fact that we recognize as valid
not only the rules of construction which the intuitionists use (the rules of
the so-called *‘strict functional calculus’’), but in addition, permit the use
of the expression ‘for all properties’ (the operations of the so-called
‘‘extended functional calculus’’).

Further, logicism has a methodological affinity with formalism. Logi-
cism proposes to construct the loglcal-mathematical system in such a way
that, although the axloms and rules of Inference are chosen with an inter-
pretation of the primitive symbols In mind, nevertheless, inside the sys-
tem the chains of deductions and of definitions are carried through for-

mglly as in a pure calculus, i.e., without reference to the meaning of the
primitive symbols,

2. The intuitionist foundations of mathematics

[Die intuitionistische Grundlegung der Mathematik]
AREND HEYTING

The i{ltuitioni.f»t mathematician proposes to do mathematics as a natural
function (?f l}ls intellect, as a free, vital activity of thought. For him,
mathematics is a production of the human mind. He uses language, both

52



The intuitionist foundations of mathematics

natural and formalized, only for communicating thoughts, i.e., to get
others or himself to follow his own mathematical ideas. Such a linguistic
accompaniment is not a representation of mathematics; still less is it
mathematics itself.

It would be most in keeping with the active attitude of the intuitionist
to deal at once with the construction of mathematics. The most impor-
tant building block of this construction is the concept of unity which is
the architectonic principle on which the series of integers depends. The
integers must be treated as units which differ from one another only by
their place in this series. Since in his Logischen Grundiagen der exakten
Wissenschaften Natorp has already carried out such an analysis, which in
the main conforms tolerably well to the intuitionist way of thinking, I
will forego any further analysis of these concepts. But I must still make
one remark which is essential for a correct understanding of our intui-
tionist position: we do not attribute an existence independent of our
thought, i.e., a transcendental existence, to the integers or to any other
mathematical objects. Even though it might be true that every thought
refers to an object conceived to exist independently of it, we can never-
theless let this remain an open question. In any event, such an object
need not be completely independent of human thought. Even if they
should be independent of individual acts of thought, mathematical
objects are by their very nature dependent on human thought. Their exis-
tence is guaranteed only insofar as they can be determined by thought.
They have properties only insofar as these can be discerned in them by
thought. But this possibility of knowledge is revealed to us only by the
act of knowing itself. Faith in transcendental existence, unsupported by
concepts, must be rejected as a means of mathematical proof. As I will
shortly Illustrate more fully by an example, this is the reason for doubt-
ing the law of excluded middle.

Oskar Becker has dealt thoroughly with the problems of mathematical
existence in his book on that subject. He has also uncovered many con-
nections between these questions and the most profound philosophical
problems.

We return now to the construction of mathematics. Although the intro-
duction of the fractions as pairs of integers does not lead to any basic dif-
ficulties, the definition of the irrational numbers is another story. A real
number is defined according to Dedekind by assigning to every rational
number either the predicate ‘Left’ or the predicate ‘Right’ in such a way
that the natural order of the rational numbers is preserved. But if we
were to transfer this definition into intuitionist mathematics in exactly
this form, we would have no guarantee that Euler’s constant C is a real
number. We do not need the definition of C. It suffices to know that this

53



AREND HEYTING

definition amounts to an algorithm which permits us to enclose C within
an arbitrarily small rational interval. (A rational interval is an interval
whose end points are rational numbers. But, as absolutely no ordering
relations have been defined between C and the rational numbers, the
word ‘enclose’ is obviously vague for practical purposes. The practical
question is that of computing a series of rational intervals each of which
is contained in the preceding one in such a way that the computation can
always be continued far enough so that the last interval is smaller than an
arbitrarily given limit.) But this algorithm still provides us with no way of
deciding for an arbitrary rational number A whether it lies left or right of
C or is perhaps equal to C. But such a method is just what Dedekind's
definition, interpreted intuitionistically, would require.

The usual objection against this argument is that it does not matter
whether or not this question can be decided, for, if it is not the case that
A=C, then either A<Cor A>C, and this last alternative is decided after
a finite, though perhaps unknown, number of steps N in the computa-
tion of C. I need only reformulate this objection to refute it. It can mean
only this: either there exists a natural number N such that after N steps in
the computation of Cit turns out that A< C or A> C; or there is no such
N and hence, of course, 4=C. But, as we have seen, the existence of N
signifies nothing but the possibility of actually producing a number with
the requisite property, and the non-existence of N signifies the possibility
of deriving a contradiction from this property. Since we do not know
whether or not one of these possibilities exists, we may not assert that N
either exists or does not exist. In this sense, we can say that the law of ex-
cluded middle may not be used here.

In its original form, then, Dedekind’s definition cannot be used
in intuitionist mathematics. Brouwer, however, has improved it in the
following way: Think of the rational numbers enumerated in some way.
For the sake of simplicity, we restrict ourselves to the numbers in the

closed unit interval and take always as our basis the following enumer-
ation:

@onll2131234
2°3 3474’55 5 85"

A feal nu.mber is determined by a cut in the series (A); i.e., by a rule
which assigns to each rational number in the series either the predicate
‘L{fft’ or the predicate ‘Right’ in such a way that the natural order of the
fatlonal numbers is preserved. At each step, however, we permit one
individual number to be left out of this mapping. For example, let the
rule be so formed that the series of predicates begins this way:
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1 1 21 3 1
o1l 12131234
233 4> 5’555

4’
LlRl Ll Ll r’ L

Here 2/3 is temporarily left out of the mapping. We need not know
whether or not the predicate for 2/3 is ever determined. But it is also a
possibility that 3/4 should become a new excluded number and hence
that 2/3 would receive the predicate ‘Left’.

It is easy to give a cut for Euler’s constant. Let d,, be the smallest dif-
ference between two successive numbers in the first # numbers of (A).
Now if we compute C far enough to get a rational interval / which is
smaller than d,, then at most one of these # numbers can fall within i. If
there is such a number, it becomes the excluded number for the cut.
Thus, we can see how closely Brouwer’s definition is related to the actual
computation of a real number.

We can now take an important step forward. We can drop the require-
ment that the series of predicates be determined to infinity by a rule. It
suffices if the series is determined step by step in some way, e.g., by free
choices. I call such sequences “‘infinitely proceeding.”’ Thus the defini-
tion of real numbers is extended to allow infinitely proceeding sequences
in addition to rule-determined sequences. Before discussing this new def-
inition in detail, we will give a simple example. We begin with this ‘‘Left-
Right’’ choice-sequence:

112131
2’33744’ 5’
L,R, L, L, R, L, R, L, L,

Here the question about which predicate 3/5 receives cannot be answered
yet, for it must still be decided which predicate to give it. The question
about the predicate which 4/5 receives, on the other hand, can be
answered now by ‘Right,’ since that choice would hold for every possible
continuation of the sequence. In general, only those questions about an
infinitely proceeding sequence which refer to every possible continuation
of the sequence are susceptible of a determinate answer. Other questions,
like the foregoing about the predicate for 3/5, must therefore be regarded
as meaningless. Thus choice-sequences supplant, not so much the indi-
vidual rule-determined sequences, but rather the totality of all possible
rules. A ““Left-Right’’ choice-sequence, the freedom of choice for which
is limited only by the conditions which result from the natural order of
the rational numbers, determines not just one real number but the spread

0,1, )

r 3

3
5

w| A

2
5
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of all real numbers or the continuum. Whereas we ordinarily think of
each real number as individually defined and only afterwards think of
them all together, we here define the continuum as a totality. If we re-
strict this freedom of choice by rules given in advance, we obtain spreads
of real numbers. For example, if we prescribe that the sequence begin in
the way we have just written it, we define the spread of real numbers
between 1/2 and 2/3. An infinitely proceeding sequence gradually
becomes a rule-determined sequence when more and more restrictions
are placed on the freedom of choice.

We have used the word ‘spread’ exactly in Brouwer’s sense. His defini-
tion of a spread is a generalization of this notion. In addition to choice-
sequences, Brouwer treats sequences which are formed from choice-
sequences by mapping rules. A spread involves two rules. The first rule
states which choices of natural numbers are allowed after a determinate
finite series of permitted choices has been made. The rule must be so
drawn that at least one new permissible choice is known after each finite
series of permitted choices has been made. The natural order of the
rational numbers is an example of such a rule for our ‘“Left-Right’’ se-
quence previously given. The second rule involved in a spread assigns a
mathematical object to each permissible choice. The mathematical object
may, of course, depend also on choices previously made. Thus it is per-
missible to terminate the mapping at some particular number and to
assign nothing to subsequent choices. A sequence which results from a
permissible choice-sequence by a mapping-rule is called an ‘‘element’’ of
the spread.

To bring our previous example of the spread of real numbers between
3/2 and 2(3 under this general definition, we will replace the predicates

Left’, ‘Right’, and ‘temporarily undetermined’, by 1, 2, and 3; and we
will derive the rule for permissible choices from the natural order of the
rational numbers and from the requirement that the sequence begin in 2
particular way; and we will take identity for the mapping-rule.

. ,;x spread (ljs not the sum of its elements (this statement is meaningless
nless spreads are regarded as existing i i
identified with its de%ining rules. "Sl"t\\rrf ;?e:::rrlrtl:e:;(;s)s.plr{:z:g Z;easiri)éiidl;:
equal if equal objects exist at the nth place in both for every n. Equality
:li:ir::n’:% oli"e atshr;rizd, th(:;efore, does not mean that they are the same
spread by the same ch:)r;e’- & would have to be. asslgm?d to the same
mathematical objects ec::aslequ‘lmc'e' heyould be 1mpract1cz_:11 Lo er
every kind of object ml?st re ive ff ped are.tt'le' e Objec't' Rathet

Brouwer calls *species tl"felve its own de'fmmon of'equalfty. o
terminology, by a charateri ose spreads which are defined, in clasm'ca

g cteristic property of their members. A species,
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like a spread, is not regarded as the sum of its members but is rather iden-
tified with its defining property. Impredicative definitions are made
impossible by the fact, which intuitionists consider self-evident, that only
previously defined objects may occur as members of a species. There
results, consequently, a step-by-step introduction of species. The first
level is made up of those spread-species whose defining property is
identity with an element of a particular spread. Hence, to every spread M
there corresponds the spread-species of those spread-elements which are
identical with some element of M.' A species of the first order can con-
tain spread-elements and spread-species. In addition, a species of the
second order contains species of the first order as members, and so on.

The introduction of infinitely proceeding sequences is not a necessary
consequence of the intuitionist approach. Intuitionist mathematics could
be constructed without choice-sequences. But the following set-theoretic
theorem about the continuum shows how much mathematics would
thereby be impoverished. This theorem will also serve as an example of
an intuitionist reasoning process.

Let there be a rule assigning to each real number a natural number as
its correlate. Assume that the real numbers 2 and b have different corre-
lates, e.g., 1 and 2. Then, by a simple construction, we can determine a
third number ¢ which has the following property: in every neighborhood
of ¢, no matter how small, there is a mapped number other than c; i.e.,
every finite initial segment of the cut which defines ¢ can be continued so
as to get a mapped number other than c. We define the number d by a
choice-sequence thus: we begin as with ¢ but we reserve the freedom to
continue at an arbitrary choice in a way different from that for c¢. Obvi-
ously the correlate of d is not determined after any previously known
finite number of choices. Accordingly, no definite correlate is assigned to
d. But this conclusion contradicts our premise that every real number has
a correlate. Qur assumption that the two numbers a and b have different
correlates is thus shown to be contradictory. And, since two natural
numbers which cannot be distinguished are the same number, we have
the following theorem: if every real number is assigned a correlate, then
all the real numbers have the same correlate.

As a special result, we have: if a continuum is divided into two sub-
species in such a way that every member belongs to one and only one of
these subspecies, then one of the subspecies is empty and other other is
identical with the continuum.

The unit continuum, for example, cannot be subdivided into the spe-
cies of numbers between 0 and 1/2 and the species of numbers between

"This definition of spread-species is taken from a communication of Professor Brouwer.
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1/2 and 1, for the preceding construction produces a number for which
one need never decide whether it is larger or smaller than 1/2. The
theorems about the continuity of a function determined in an interval are
also connected with the foregoing theorem. But Brouwer’s theorem about
the uniform continuity of alt full functions goes far beyond these results.

But what becomes of the theorem: we have just proved if no infinitely
proceeding sequences are allowed in mathematics? In that event, the spe-
cies of numbers defined by rule-determined sequences would have to take
the place of the continuum. This definition is admissible if we take it to
mean that a number belongs to this species only if there is a rule which
permits us actually to determine all the predicates of the sequence
successively.

In this event, the foregoing proof continues to hold only if we succeed
in defining the number d by a rule-determined sequence rather than by a
choice-sequence. We can probably do it if we make use of certain unre-
solved problems; e.g., whether or not the sequence 0123456789 occurs in
the decimal expansion of x. We can let the question - whether or not to
deviate from the predicate series for c, at the nth predicate in the predi-
cate sequence for d - depend on the occurrence of the preceding sequence
at the nth digit after the decimal point in x. This proof obviously is
weakened as soon as the question about the sequence is answered. But, in
the event that it is answered, we can replace this question by a similar
unanswered question, if there are any left. We can prove our theorem for
rule-determined sequences only on the condition that there always remain
unsolved problems. More precisely, the theorem is true if there are two
numbers, determined by rule-determined sequences, such that the ques-
tion about whether they are the same or different poses a demonstrably
unsolvable problem. It is false if the existence of two such numbers is
contradictory. But the problem raised by these conditions is insuperable,
Even here choice-sequences prove to be superior to rule-determined
sequences in that the former make mathematics independent of the ques-
tion of the existence of unsolvable problems.

We conclude our treatment of the construction of mathematics in
order Fo.say something about the intuitionist propositional calculus. We
here dlst'mguish between propositions and assertions. An assertion is the
afﬁrrpatlon of a proposition. A mathematical proposition expresses a
cer.tam expectation. For example, the proposition, ‘Euler’s constant C is
rational’, expresses the expectation that we could find two integers a@ and
b such tha( C=a/b. Perhaps the word ‘intention’, coined by the phe-
nomenologists, expresses even better what is meant here. We also use the
word ‘proposition’ for the intention which is linguistically expressed by
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the proposition. The intention, as already emphasized above, refers not
only to a state of affairs thought to exist independently of us but also to
an experience thought to be possible, as the preceding example clearly
brings out.

The affirmation of a proposition means the fulfillment of an intention.
The assertion ‘C is rational’, for example, would mean that one has in
fact found the desired integers. We distinguish an assertion from its cor-
responding proposition by the assertion sign ‘+’ that Frege introduced
and which Russell and Whitehead also used for this purpose. The affir-
mation of a proposition is not itself a proposition; it is the determination
of an empirical fact, viz., the fulfillment of the intention expressed by the
proposition.

A logical function is a process for forming another proposition from a
given proposition. Negation is such a function. Becker, following
Husserl, has described its meaning very clearly. For him negation is
something thoroughly positive, viz., the intention of a contradiction con-
tained in the original intention. The proposition ‘C'is not rational’, there-
fore, signifies the expectation that one can derive a contradiction from
the assumption that C is rational. It is important to note that the nega-
tion of a proposition always refers to a proof procedure which leads to
the contradiction, even if the original proposition mentions no proof
procedure. We use — as the symbol for negation.

For the law of excluded middle we need the logical function ‘‘either-
or”. *pV ¢ signifies that intention which is fulfilled if and only if at least
one of the intentions p and q is fulfilled. The formula for the law of
excluded middle would be ‘+p Vv —p’. One can assert this law for a par-
ticular proposition p only if p either has been proved or reduced to a con-
tradiction. Thus, a proof that the law of excluded middle is a general law
must consist in giving a method by which, when given an arbitrary prop-
osition, one could always prove either the proposition itself or its nega-
tion. Thus the formula ‘p Vv - p’ signifies the expectation of a mathe-
matical construction (method of proof) which satisfies the aforemen-
tioned requirement. Or, in other words, this formula is a mathematical
proposition; the question of its validity is a mathematical problem which,
when the law is stated generally, is unsolvable by mathematical means. In
this sense, logic is dependent on mathematics.

We conclude with some remarks on the question of the solvability of
mathematical problems. A problem is posed by an intention whose ful-
fillment is sought. It is solved either if the intention is fulfilled by a con-
struction or if it is proved that the intention leads to a contradiction. The
question of solvability can, therefore, be reduced to that of provability.
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