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Definite descriptions are usually treated as first-order expressions denoting
unique objects satisfying certain properties. In this talk, we intend to pro-
pose their second-order generalisation that refers to unique relations or unique
properties. We investigate this subject within the paradigm of Russell’s theory
of definite descriptions. Second-order logic is known to be incomplete, but its
fragment defined my the means of Henkin’s general models is complete [I]. We
formulate our theory within this complete fragment and formalize it using a cut-
free sequent calculus based on Indrzejczak and Kiirbis’ [2] one for the first-order
version of Russell’s theory [4, [].

We adhere to the exposition of Russell’s theory as articulated by Indrzejczak
and Zawidzki [3] as well as Indrzejezak and Kiirbis [2]. Definite descriptions are
defined using the A-operator as follows:

(Az)uyp <> Fx(Vy(p <>y =z) A9)

Consider the standard first-order language with identity. It is extended by
the following expressions: a predicate abstract (Azp), where ¢ is a formula;
a quasi-term txp, where ¢ is a formula and x is an individual variable; and a
formula (lambda atom) ¢t, where ¢ is a predicate abstract and ¢ a term or quasi-
term. It is a language of the logic RL described in [3, [2]. Let us further expand
this language. We incorporate relational variables XY, Z, X1, ..., second order
identity X = Y understood as Vzi...Vx, (X(scl, ceyy) & Y(q,... ,xn)),
an atomic formula X (¢q,...,t,), where ¢1,...,t, are terms and X is an n-ary
relational variable. Finally, we incorporate the subsequent expressions:

e If v is a formula and X is a relational variable, then VX and 3X¢ are
formulas.

e If p is a formula, then (AX ) is a relational abstract.
e If ¢ is a formula, then : X ¢ is a pseudo-term.

o If (\X71)) is a relational abstract and Y ¢ is a pseudo-term, then (AX )Y@
is a formula.

We now possess the language of the logic RL?2, the second-order generaliza-
tion of RL.

Consider a standard model (for the first-order logic with identity) M =
(D, I) with an assignment v from the set of variables to D. Henkin’s general
model is a pair M = (M, G), where M = (D, I) is the above defined model and G
is a set of subsets, relations (of any arity) on D. Let an assignment be extended
for the case of relational variables. We write v to denote the X-variant of



v with v3 (X) = O, where O € G. We define the notion of satisfaction of a
formula ¢ with v in a general model, symbolically 9, v = ¢, for second-order
formulas as follows:

MoEX=Y iff v(X) =0v(Y),
M, v = (AX)1Y @ iff there is an O € G such that M, v = b,

M, v | ¢k, and for any Y-variant v’ of v,
if M, 0" = ¢, then o' (V) =0

M, v = VX iff M, 05 = ¢, forall O € G,

M, v = IX @ iff M, 03 = ¢, for some O € G.

Notice that if G contains all the relations on D, then we get the standard
semantics for second-order logic which is known to be incomplete.

We extend the sequent calculus presented in [2] by the following rules for
the second-order formulas, where parameters play the role of the free variables:
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where ai,...,a, are fresh individual parameters, not present in I' and A;
bi,...,b, are arbitrary individual parameters; A is a fresh relational param-
eter, not present in I'; A and ¢; B and C are arbitrary relational parameters.
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