Canonical formulas for substructural logics

Nick Galatos (Joint work with Kempton Albee)

University of Denver

CLoCk, Krakow, June 2025

Outline		

- Canonical formulas
- Substructural Logics and Residuated lattices
- The substructural hierarchy
- Sufficient condition via 3 properties
- Conic idempotent n-cyclic
- ${\ensuremath{\, \bullet \,}}$ Weakly commutative and $(n,m)\ensuremath{-}\ensuremath{\mathrm{potent}}$

Using a generalization of Jankov formulas [Jankov 1968], [Chagrov-Zakharyaschev] axiomatized all varieties of Intuitionistic logic/Heyting algebras in a unifrom way by *canonical* formulas.

Using a generalization of Jankov formulas [Jankov 1968], [Chagrov-Zakharyaschev] axiomatized all varieties of Intuitionistic logic/Heyting algebras in a unifrom way by *canonical* formulas. Heyting algebras admit relational semantics (Kripke frames). Unfortunately there is no equally rebust theory for relational semantics for residuated lattices.

Goal		

Using a generalization of Jankov formulas [Jankov 1968], [Chagrov-Zakharyaschev] axiomatized all varieties of Intuitionistic logic/Heyting algebras in a unifrom way by *canonical* formulas. Heyting algebras admit relational semantics (Kripke frames). Unfortunately there is no equally rebust theory for relational semantics for residuated lattices. Fortunately, [Bezhanishvili-Bezhanishvili RSL 2009] recast the proof in algebraic terms.

Carl		

Using a generalization of Jankov formulas [Jankov 1968], [Chagrov-Zakharyaschev] axiomatized all varieties of Intuitionistic logic/Heyting algebras in a unifrom way by *canonical* formulas. Heyting algebras admit relational semantics (Kripke frames). Unfortunately there is no equally rebust theory for relational semantics for residuated lattices. Fortunately, [Bezhanishvili-Bezhanishvili RSL 2009] recast the proof in algebraic terms.

In [Bezhanishvili-G.-Spada AU 2017] we extended this to varieties of k-potent commutative integral residuated lattices.

Carl		

Using a generalization of Jankov formulas [Jankov 1968], [Chagrov-Zakharyaschev] axiomatized all varieties of Intuitionistic logic/Heyting algebras in a unifrom way by *canonical* formulas. Heyting algebras admit relational semantics (Kripke frames). Unfortunately there is no equally rebust theory for relational semantics for residuated lattices. Fortunately, [Bezhanishvili-Bezhanishvili RSL 2009] recast the proof in algebraic terms.

In [Bezhanishvili-G.-Spada AU 2017] we extended this to varieties of k-potent commutative integral residuated lattices.

Goal: To identify a sufficient condition for a substructural logic to admit canonical formulas.

Carl		

Using a generalization of Jankov formulas [Jankov 1968], [Chagrov-Zakharyaschev] axiomatized all varieties of Intuitionistic logic/Heyting algebras in a unifrom way by *canonical* formulas. Heyting algebras admit relational semantics (Kripke frames). Unfortunately there is no equally rebust theory for relational semantics for residuated lattices. Fortunately, [Bezhanishvili-Bezhanishvili RSL 2009] recast the proof in algebraic terms.

In [Bezhanishvili-G.-Spada AU 2017] we extended this to varieties of $k\mbox{-}potent$ commutative integral residuated lattices.

Goal: To identify a sufficient condition for a substructural logic to admit canonical formulas. Also, to give two examples of such a situation.

Using a generalization of Jankov formulas [Jankov 1968], [Chagrov-Zakharyaschev] axiomatized all varieties of Intuitionistic logic/Heyting algebras in a unifrom way by *canonical* formulas. Heyting algebras admit relational semantics (Kripke frames). Unfortunately there is no equally rebust theory for relational semantics for residuated lattices. Fortunately, [Bezhanishvili-Bezhanishvili RSL 2009] recast the proof in algebraic terms.

In [Bezhanishvili-G.-Spada AU 2017] we extended this to varieties of k-potent commutative integral residuated lattices.

Goal: To identify a sufficient condition for a substructural logic to admit canonical formulas. Also, to give two examples of such a situation.

Benefits:

1. Canonical formulas provide a uniform way for axiomatizing all subvarieties.

Using a generalization of Jankov formulas [Jankov 1968], [Chagrov-Zakharyaschev] axiomatized all varieties of Intuitionistic logic/Heyting algebras in a unifrom way by *canonical* formulas. Heyting algebras admit relational semantics (Kripke frames). Unfortunately there is no equally rebust theory for relational semantics for residuated lattices. Fortunately, [Bezhanishvili-Bezhanishvili RSL 2009] recast the proof in algebraic terms.

In [Bezhanishvili-G.-Spada AU 2017] we extended this to varieties of k-potent commutative integral residuated lattices.

Goal: To identify a sufficient condition for a substructural logic to admit canonical formulas. Also, to give two examples of such a situation.

Benefits:

- 1. Canonical formulas provide a uniform way for axiomatizing all subvarieties.
- 2. The axiomatization has semantical meaning (instead of being 'pure syntax').

Using a generalization of Jankov formulas [Jankov 1968], [Chagrov-Zakharyaschev] axiomatized all varieties of Intuitionistic logic/Heyting algebras in a unifrom way by *canonical* formulas. Heyting algebras admit relational semantics (Kripke frames). Unfortunately there is no equally rebust theory for relational semantics for residuated lattices. Fortunately, [Bezhanishvili-Bezhanishvili RSL 2009] recast the proof in algebraic terms.

In [Bezhanishvili-G.-Spada AU 2017] we extended this to varieties of $k\mbox{-}potent$ commutative integral residuated lattices.

Goal: To identify a sufficient condition for a substructural logic to admit canonical formulas. Also, to give two examples of such a situation.

Benefits:

- 1. Canonical formulas provide a uniform way for axiomatizing all subvarieties.
- 2. The axiomatization has semantical meaning (instead of being 'pure syntax').
- 3. The canonical formula for a variety can be effectively computed (by constructing all subdirectly irreducible algebras up to a certain cardinality).

Using a generalization of Jankov formulas [Jankov 1968], [Chagrov-Zakharyaschev] axiomatized all varieties of Intuitionistic logic/Heyting algebras in a unifrom way by *canonical* formulas. Heyting algebras admit relational semantics (Kripke frames). Unfortunately there is no equally rebust theory for relational semantics for residuated lattices. Fortunately, [Bezhanishvili-Bezhanishvili RSL 2009] recast the proof in algebraic terms.

In [Bezhanishvili-G.-Spada AU 2017] we extended this to varieties of $k\mbox{-}potent$ commutative integral residuated lattices.

Goal: To identify a sufficient condition for a substructural logic to admit canonical formulas. Also, to give two examples of such a situation.

Benefits:

- 1. Canonical formulas provide a uniform way for axiomatizing all subvarieties.
- 2. The axiomatization has semantical meaning (instead of being 'pure syntax').
- 3. The canonical formula for a variety can be effectively computed (by constructing all subdirectly irreducible algebras up to a certain cardinality).
- 4. Canonical formulas are in the \mathcal{N}_4 level of the substructural formula hierarchy and they all have a uniform shape. So for varieties admitting canonical formulas, the substructural hierarchy stabilizes.

Substructural logics ●000000	Canonical formulas 000	Semiconic idempotent	Weakly commutative and potent
Substructural I	ogics		

Classical logic studies truth.

Intuitionistic logic (Brouwer, Heyting) deals with provability or constructibility. The algebraic models are Heyting algebras.

Many-valued logic (Łukasiewicz) allows different degrees of truth. [Ulam's game] $[x \rightarrow (x \rightarrow y)] \rightarrow (x \rightarrow y)$ is not a theorem. The algebraic models fail $x \leq x \cdot x$.

Relevance logic (Anderson, Belnap) deals with relevance.

 $p \to (q \to q)$ is not a theorem. The algebraic models do not satisfy integrality $x \leq 1$. $p \to (\neg p \to q)$ [or $(p \cdot \neg p) \to q$] is not a theorem, where $\neg p = p \to 0$. The algebraic models do not satisfy $0 \leq x$.

Linear logic (Girard) studies preservation of resourses. $p \rightarrow (p \rightarrow p)$ [or $(p \cdot p) \rightarrow p$] and $p \rightarrow (p \cdot p)$ are not theorems. The algebraic models do not satisfy mingle $x^2 \leq x$ nor contraction $x \leq x^2$.

The calculi for substructural logics have variants used in:

- Mathematical linguistics: Context-free grammars, pregroups. (Lambek, Buzskowski)
- CS: Memory allocation, pointer management, concurrent programming. (Separation logic, bunched implication logic).

Substructural logics		
000000		

Gentzen's system LJ for intuitionistic logic

A sequent is an expression $a_1, \ldots, a_n \Rightarrow a_0$, where a's are formulas. For $a, b, c \in Fm$, $x, y, z, x_1, x_2 \in Fm^*$, we have the inference rules:

$$\frac{x \Rightarrow a \quad y, a, z \Rightarrow c}{y, x, z \Rightarrow c} (\text{cut}) \quad \overline{a \Rightarrow a} (\text{Id})$$

$$\frac{y, x_1, x_2, z \Rightarrow c}{y, x_2, x_1, z \Rightarrow c} (e) \quad \frac{y, z \Rightarrow c}{y, x, z \Rightarrow c} (w) \quad \frac{y, x, x, z \Rightarrow c}{y, x, z \Rightarrow c} (c)$$

$$\frac{y, a, z \Rightarrow c}{y, a \land b, z \Rightarrow c} (\land L\ell) \quad \frac{y, b, z \Rightarrow c}{y, a \land b, z \Rightarrow c} (\land Lr) \quad \frac{x \Rightarrow a \quad x \Rightarrow b}{x \Rightarrow a \land b} (\land R)$$

$$\frac{y, a, z \Rightarrow c \quad y, b, z \Rightarrow c}{y, a \lor b, z \Rightarrow c} (\lor L) \quad \frac{x \Rightarrow a}{x \Rightarrow a \lor b} (\lor R\ell) \quad \frac{x \Rightarrow b}{x \Rightarrow a \lor b} (\lor Rr)$$

$$\frac{x \Rightarrow a \quad y, b, z \Rightarrow c}{y, x, a \to b, z \Rightarrow c} (\rightarrow L) \quad \frac{a, x \Rightarrow b}{x \Rightarrow a \to b} (\rightarrow R)$$

$$\frac{y, z \Rightarrow c}{y, 1, z \Rightarrow c} (1L) \quad \overline{\varepsilon \Rightarrow 1} (1R)$$

Substructural logics		
000000		

Basic substructural logics

In LJ, the sequent $a_1, \ldots, a_n \Rightarrow a_0$ is provable iff the sequent $a_1 \land \ldots \land a_n \Rightarrow a_0$ is, so comma corresponds to \land . The proof system **FL** of Full Lambek calculus is obtained from Gentzen's proof system **LJ** for intuitionistic logic by removing the three basic structural rules:

$$\begin{array}{ll} \displaystyle \frac{u[x,y] \Rightarrow c}{u[y,x] \Rightarrow c} & (e) \\ \hline u[y,x] \Rightarrow c \end{array} & (e) \\ \displaystyle (\text{exchange}) & [x \to (y \to z)] \to [y \to (x \to z)] & xy \leqslant yx \\ \\ \displaystyle \frac{u[x,x] \Rightarrow c}{u[x] \Rightarrow c} & (c) \\ \hline u[x] \Rightarrow c \end{array} & (c) \\ \displaystyle (\text{contraction}) & [x \to (x \to y)] \to (x \to y) \\ \hline x \leqslant x^2 \\ \\ \displaystyle \frac{u[\varepsilon] \Rightarrow c}{u[x] \Rightarrow c} & (i) \\ \hline (\text{integrality}) & y \to (x \to y) \\ \hline x \leqslant 1 \end{array}$$

Substructural logics		
000000		

Basic substructural logics

In LJ, the sequent $a_1, \ldots, a_n \Rightarrow a_0$ is provable iff the sequent $a_1 \land \ldots \land a_n \Rightarrow a_0$ is, so comma corresponds to \land . The proof system **FL** of Full Lambek calculus is obtained from Gentzen's proof system **LJ** for intuitionistic logic by removing the three basic structural rules:

$$\begin{array}{ll} \displaystyle \frac{u[x,y] \Rightarrow c}{u[y,x] \Rightarrow c} & (e) \\ \displaystyle \frac{u[x,x] \Rightarrow c}{u[x] \Rightarrow c} & (e) \end{array} & (\text{exchange}) & \left[x \rightarrow (y \rightarrow z)\right] \rightarrow \left[y \rightarrow (x \rightarrow z)\right] & xy \leqslant yx \\ \\ \displaystyle \frac{u[x,x] \Rightarrow c}{u[x] \Rightarrow c} & (c) \\ \displaystyle \frac{u[\varepsilon] \Rightarrow c}{u[x] \Rightarrow c} & (i) \end{array} & (\text{contraction}) & \left[x \rightarrow (x \rightarrow y)\right] \rightarrow (x \rightarrow y) \qquad x \leqslant x^2 \\ \\ \displaystyle \frac{u[\varepsilon] \Rightarrow c}{u[x] \Rightarrow c} & (i) \\ \displaystyle (\text{integrality}) \qquad y \rightarrow (x \rightarrow y) \qquad x \leqslant 1 \end{array}$$

In **FL**, comma and \land do not correspond any more. But we can conservatively add a new connective \cdot (*fusion* or *multiplication*) that does correspond to comma and rules:

$$\frac{y, a, b, z \Rightarrow c}{y, a \cdot b, z \Rightarrow c} (\cdot L) \qquad \frac{x \Rightarrow a \quad y \Rightarrow b}{x, y \Rightarrow a \cdot b} (\cdot R)$$

Also, $a \rightarrow b$ splits into $a \setminus b$ and b/a.

Substructural logics		

$$\frac{x \Rightarrow a \quad y, a, z \Rightarrow c}{y, x, z \Rightarrow c} (\text{cut}) \qquad \overline{a \Rightarrow a} (\text{Id})$$

$$\frac{y, a, z \Rightarrow c}{y, a \land b, z \Rightarrow c} (\land L\ell) \quad \frac{y, b, z \Rightarrow c}{y, a \land b, z \Rightarrow c} (\land Lr) \quad \frac{x \Rightarrow a \quad x \Rightarrow b}{x \Rightarrow a \land b} (\land R)$$

$$\frac{y, a, z \Rightarrow c \quad y, b, z \Rightarrow c}{y, a \lor b, z \Rightarrow c} (\lor L) \quad \frac{x \Rightarrow a}{x \Rightarrow a \lor b} (\lor R\ell) \quad \frac{x \Rightarrow b}{x \Rightarrow a \lor b} (\lor Rr)$$

$$\frac{x \Rightarrow a \quad y, b, z \Rightarrow c}{y, x, (a \lor b), z \Rightarrow c} (\lor L) \quad \frac{a, x \Rightarrow b}{x \Rightarrow a \lor b} (\lor Rr)$$

$$\frac{x \Rightarrow a \quad y, b, z \Rightarrow c}{y, (b/a), x, z \Rightarrow c} (\land L) \quad \frac{x, a \Rightarrow b}{x \Rightarrow b/a} (\land R)$$

$$\frac{y, a, b, z \Rightarrow c}{y, (b/a), x, z \Rightarrow c} (\land L) \quad \frac{x \Rightarrow a \quad y \Rightarrow b}{x \Rightarrow b/a} (\land R)$$

$$\frac{y, a, b, z \Rightarrow c}{y, a \lor b, z \Rightarrow c} (\land L) \quad \frac{x \Rightarrow a \quad y \Rightarrow b}{x, y \Rightarrow a \lor b} (\cdot R)$$

$$\frac{y, z \Rightarrow c}{y, 1, z \Rightarrow c} (1L) \quad \overline{\varepsilon \Rightarrow 1} (1R)$$

where $a, b, c \in Fm$, $x, y, z \in Fm^*$. Extensions of **FL** are known as *substructural logics*.

Substructural logics 0000●00		

Residuated lattices

A residuated lattice is an algebra $\mathbf{A}=(A,\,\wedge,\,\vee,\,\cdot,\,\backslash,,1)$ such that

- $(A,\, \wedge,\, {\bf v})$ is a lattice,
- $\bullet \ (A, \cdot, 1)$ is a monoid and
- for all $a, b, c \in A$, $ab \leq c \Leftrightarrow b \leq a \setminus c \Leftrightarrow a \leq c/b$.

Substructural logics 0000●00		

Residuated lattices

A residuated lattice is an algebra $\mathbf{A}=(A,\,\wedge,\,\vee,\,\cdot,,\backslash,,1)$ such that

- $(A,\, \wedge,\, {\bf v})$ is a lattice,
- $\bullet \ (A, \cdot, 1)$ is a monoid and
- for all $a, b, c \in A$, $ab \leq c \Leftrightarrow b \leq a \setminus c \Leftrightarrow a \leq c/b$.

Examples:

- 1. Boolean and Heyting algebras, where $x \cdot y = x \wedge y$ and $x \to y = x \setminus y = y/x$. We also add a constant 0 and define $\neg x = x \to 0$.
- 2. Also, MV-algebras and other algebras of substructural logics: Linear, relevance, MV, BL, MTL, where multiplication is strong conjunction.

Substructural logics 0000●00		

Residuated lattices

A residuated lattice is an algebra $\mathbf{A}=(A,\,\wedge,\,\vee,\,\cdot,,\backslash,,1)$ such that

- (A, \wedge, \vee) is a lattice,
- $\bullet \ (A,\cdot,1)$ is a monoid and
- for all $a, b, c \in A$, $ab \leq c \Leftrightarrow b \leq a \setminus c \Leftrightarrow a \leq c/b$.

Examples:

- 1. Boolean and Heyting algebras, where $x \cdot y = x \wedge y$ and $x \to y = x \setminus y = y/x$. We also add a constant 0 and define $\neg x = x \to 0$.
- 2. Also, MV-algebras and other algebras of substructural logics: Linear, relevance, MV, BL, MTL, where multiplication is strong conjunction.
- 3. Lattice-ordered groups: $x \setminus y = x^{-1}y$ and $y/x = yx^{-1}$. (and ℓ -pregroups)
- 4. Quantales (relating to quantal-valued model theory, C*-algebras)
- 5. Relation algebras: $R \setminus S = (R^{\cup} \circ S^c)^c$, $S/R = (S^c \circ R^{\cup})^c$.
- 6. Lattices of ideals of rings, under the usual multiplication and division of ideals. (Ward and Dilworth 1930's)

7. Computer Science: Action algebras, Kleene algebras with tests. (Pratt, Kozen) Varieties of residuated lattices form *equivalent algebraic semantics* (a la Lindenbaum-Blok-Pigozzi) for various substructural logics.

Substructural logics 00000●0		

Beyond sequent rules

By results of [G.-Jipsen, TAMS, 2013], $\{\vee, \cdot, 1\}$ -equations give rise to analytic structural *sequent* rules (cut elimination holds).

By results of [Ciabbatoni-G.-Terui, LICS, 2008] and [G.-Ciabbatoni-Terui, APAL, 2012] strongly analytic sequent rules are essentially defined only by $\{\vee, \cdot, 1\}$ -equations.

A hypersequent is a multiset $s_1 \mid \cdots \mid s_m$ of sequents s_i . Hypersequent structural rules:

$$\frac{H \mid s_1' \quad H \mid s_2' \quad \dots \quad H \mid s_n'}{H \mid s_1 \mid \cdots \mid s_m}$$

Hypersequent calculi allow for the proof-theoretic study of many more extensions, such as the Gödel-Dummet logic modeled by $(x \rightarrow y) \lor (y \rightarrow x)$, as | is a form of disjunction.

Substructural logics 00000●0		

Beyond sequent rules

By results of [G.-Jipsen, TAMS, 2013], $\{\vee, \cdot, 1\}$ -equations give rise to analytic structural *sequent* rules (cut elimination holds).

By results of [Ciabbatoni-G.-Terui, LICS, 2008] and [G.-Ciabbatoni-Terui, APAL, 2012] strongly analytic sequent rules are essentially defined only by $\{\vee, \cdot, 1\}$ -equations.

A hypersequent is a multiset $s_1 \mid \cdots \mid s_m$ of sequents s_i . Hypersequent structural rules:

$$\frac{H \mid s_1' \quad H \mid s_2' \quad \dots \quad H \mid s_n'}{H \mid s_1 \mid \cdots \mid s_m}$$

Hypersequent calculi allow for the proof-theoretic study of many more extensions, such as the Gödel-Dummet logic modeled by $(x \rightarrow y) \lor (y \rightarrow x)$, as | is a form of disjunction.

A series of papers on *Algebraic Proof Theory* by Ciabbatoni-G.-Terui: [LICS, 2008], [AU, 2011], [APAL, 2012], [APAL, 2017] studies

- 1. The proof theory of (sequent and) hypersequent calculi (cut elimination), including proceedures for obtaining analytic rules from axioms
- 2. connections to algebraic completions (MacNeille, hyper-MacNeille)
- 3. connections to (positive universal) classes of FSIs of the corresponding variety
- 4. relational semantics (residuated hyperframes)

Substructural logics 00000●0		

Beyond sequent rules

By results of [G.-Jipsen, TAMS, 2013], $\{v, \cdot, 1\}$ -equations give rise to analytic structural *sequent* rules (cut elimination holds).

By results of [Ciabbatoni-G.-Terui, LICS, 2008] and [G.-Ciabbatoni-Terui, APAL, 2012] strongly analytic sequent rules are essentially defined only by $\{\vee, \cdot, 1\}$ -equations.

A hypersequent is a multiset $s_1 \mid \cdots \mid s_m$ of sequents s_i . Hypersequent structural rules:

$$\frac{H \mid s_1' \quad H \mid s_2' \quad \dots \quad H \mid s_n'}{H \mid s_1 \mid \cdots \mid s_m}$$

Hypersequent calculi allow for the proof-theoretic study of many more extensions, such as the Gödel-Dummet logic modeled by $(x \to y) \lor (y \to x)$, as | is a form of disjunction.

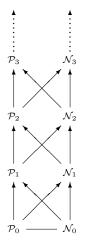
A series of papers on *Algebraic Proof Theory* by Ciabbatoni-G.-Terui: [LICS, 2008], [AU, 2011], [APAL, 2012], [APAL, 2017] studies

- 1. The proof theory of (sequent and) hypersequent calculi (cut elimination), including proceedures for obtaining analytic rules from axioms
- 2. connections to algebraic completions (MacNeille, hyper-MacNeille)
- 3. connections to (positive universal) classes of FSIs of the corresponding variety
- 4. relational semantics (residuated hyperframes)

A blueprint for more expressive axioms is given by the *substructural hierarchy* (similar to the arithmetical hierarchy) is defined by alternations of *positive* and *negative* connectives.

Substructural logics 000000●		

Substructural hierarchy



• The sets $\mathcal{P}_n, \mathcal{N}_n$ of formulas are defined by:

(0)
$$\mathcal{P}_0 = \mathcal{N}_0 =$$
 the set of variables

P1)
$$\mathcal{N}_n \subseteq \mathcal{P}_{n+1}$$

$$(P2) \quad a, b \in \mathcal{P}_{n+1} \quad \Rightarrow \quad a \lor b, a \cdot b, 1 \in \mathcal{P}_{n+1}$$

(1)
$$\mathcal{P}_n \subseteq \mathcal{N}_{n+1}$$

N2)
$$a, b \in \mathcal{N}_{n+1} \Rightarrow a \land b \in \mathcal{N}_{n+1}$$

N3) $a \in \mathcal{P}$ $b \in \mathcal{N}$ $a \Rightarrow a \land b \land b \land a \land b \in \mathcal{N}_{n+1}$

N3)
$$a \in \mathcal{P}_{n+1}, b \in \mathcal{N}_{n+1} \Rightarrow a \setminus b, b/a, 0 \in \mathcal{N}_{n+1}$$

•
$$\mathcal{P}_{n+1} = \langle \mathcal{N}_n \rangle_{\bigvee, \prod}$$
; $\mathcal{N}_{n+1} = \langle \mathcal{P}_n \rangle_{\bigwedge, \mathcal{P}_{n+1} \setminus, /\mathcal{P}_{n+1}}$

•
$$\mathcal{P}_n \subseteq \mathcal{P}_{n+1}, \mathcal{N}_n \subseteq \mathcal{N}_{n+1}, \bigcup \mathcal{P}_n = \bigcup \mathcal{N}_n = Fm$$

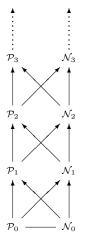
•
$$\mathcal{P}_1$$
-reduced: $\bigvee \prod p_i$

•
$$\mathcal{N}_1$$
-reduced: $\bigwedge (p_1 p_2 \cdots p_n \backslash r/q_1 q_2 \cdots q_m)$
 $p_1 p_2 \cdots p_n q_1 q_2 \cdots q_m \leqslant r$

• Sequent:
$$a_1, a_2, \ldots, a_n \Rightarrow a_0 \ (a_i \in Fm)$$

Substructural logics 000000●		

Substructural hierarchy



• The sets $\mathcal{P}_n, \mathcal{N}_n$ of formulas are defined by:

(0)
$$\mathcal{P}_0 = \mathcal{N}_0 =$$
 the set of variables

P1)
$$\mathcal{N}_n \subseteq \mathcal{P}_{n+1}$$

$$(P2) \quad a, b \in \mathcal{P}_{n+1} \quad \Rightarrow \quad a \lor b, a \cdot b, 1 \in \mathcal{P}_{n+1}$$

$$1) \mathcal{P}_n \subseteq \mathcal{N}_{n+1}$$

$$\begin{array}{l} 12) \quad a, b \in \mathcal{N}_{n+1} \implies a \land b \in \mathcal{N}_{n+1} \\ 13) \quad a \in \mathcal{P} \quad i = b \in \mathcal{N} \quad i = a \land b \models b/a \quad 0 \in \mathcal{N} \\ \end{array}$$

N3)
$$a \in \mathcal{P}_{n+1}, b \in \mathcal{N}_{n+1} \Rightarrow a \setminus b, b/a, 0 \in \mathcal{N}_{n+1}$$

•
$$\mathcal{P}_{n+1} = \langle \mathcal{N}_n \rangle_{\bigvee, \prod}$$
; $\mathcal{N}_{n+1} = \langle \mathcal{P}_n \rangle_{\bigwedge, \mathcal{P}_{n+1} \setminus, /\mathcal{P}_{n+1}}$

•
$$\mathcal{P}_n \subseteq \mathcal{P}_{n+1}, \mathcal{N}_n \subseteq \mathcal{N}_{n+1}, \bigcup \mathcal{P}_n = \bigcup \mathcal{N}_n = Fm$$

•
$$\mathcal{P}_1$$
-reduced: $\bigvee \prod p_i$

•
$$\mathcal{N}_1$$
-reduced: $\bigwedge (p_1 p_2 \cdots p_n \backslash r/q_1 q_2 \cdots q_m)$
 $p_1 p_2 \cdots p_n q_1 q_2 \cdots q_m \leqslant r$

• Sequent:
$$a_1, a_2, \ldots, a_n \Rightarrow a_0 \ (a_i \in Fm)$$

Partial attempts to handle the \mathcal{N}_4 level include:

(F

[G.-Metcalfe, APAL 2016] proof theory and complexity (coNP-complete) for *l*-groups. [Colacito-G.-Metcalfe, Santchi JoA 2022] decidability for distributive *l*-monoids.

Canonical formulas ●00	

The formulas

Given a finite algebra A and $D^{\wedge}, D^{\setminus}, D^{/} \subseteq A^2$, for each $a \in A$, we introduce a new variable X_a , and we set:

$$\Gamma := (X_{\perp} \leftrightarrow \bot) \land (X_{1} \leftrightarrow 1) \land$$

$$\bigwedge \{X_{a \cdot b} \leftrightarrow X_{a} \cdot X_{b} \mid a, b \in A\} \land$$

$$\bigwedge \{X_{a \vee b} \leftrightarrow X_{a} \lor X_{b} \mid a, b \in A\} \land$$

$$\bigwedge \{X_{a \wedge b} \leftrightarrow X_{a} \land X_{b} \mid (a, b) \in D^{\wedge}\} \land$$

$$\bigwedge \{X_{a \setminus b} \leftrightarrow X_{a} \setminus X_{b} \mid (a, b) \in D^{\vee}\} \land$$

$$\bigwedge \{X_{a / b} \leftrightarrow X_{a} / X_{b} \mid (a, b) \in D^{\vee}\}$$

and

$$\Delta := \bigvee \{ X_a \setminus X_b \land 1 \mid a, b \in A \text{ with } a \leq b \}.$$

For brevity we set $D := (D^{\wedge}, D^{\vee}, D^{\vee})$. The $\{\vee, \cdot, 1\}$ -canonical formula $\delta_{\tau}(\mathbf{A}, D)$ associated with \mathbf{A} , D, and a unary term τ is defined as follows: (and is in \mathcal{N}_4)

 $\delta_{\tau}(\mathbf{A}, D) := \tau(\Gamma) \backslash \Delta.$

Canonical formulas	
000	

A class of residuated lattices has *SI-opremums* if every subdirectly irreducible algebra in the class has an opremum: an element s < 1 where x < 1 implies $x \leq s$, for all $x \in A$.

Canonical formulas	
000	

A class of residuated lattices has *SI-opremums* if every subdirectly irreducible algebra in the class has an opremum: an element s < 1 where x < 1 implies $x \leq s$, for all $x \in A$.

A consequence relation \vdash has the τ -deduction theorem, for a given unary formula τ , if for every set of formulas $\Pi \cup \{\varphi, \psi\}$, we have

 $\Pi, \varphi \vdash \psi \text{ iff } \Pi \vdash \tau(\varphi) \backslash \psi.$

Canonical formulas	
000	

A class of residuated lattices has *SI-opremums* if every subdirectly irreducible algebra in the class has an opremum: an element s < 1 where x < 1 implies $x \leq s$, for all $x \in A$.

A consequence relation \vdash has the τ -deduction theorem, for a given unary formula τ , if for every set of formulas $\Pi \cup \{\varphi, \psi\}$, we have

$$\Pi, \varphi \vdash \psi \text{ iff } \Pi \vdash \tau(\varphi) \backslash \psi.$$

Given a unary term τ , we say that a variety of residuated lattices has the τ -deduction theorem if all of its algebras A do (for the same τ): for all $x, y \in A$ and $X \subseteq A$,

$$y \in F(X \cup \{x\})$$
 iff $\tau(x) \setminus y \in F(X)$.

Theorem. A variety of residuated lattices has the τ -deduction theorem iff the corresponding substructural logic does. (EDPC follows.)

Canonical formulas	
000	

A class of residuated lattices has *SI-opremums* if every subdirectly irreducible algebra in the class has an opremum: an element s < 1 where x < 1 implies $x \leq s$, for all $x \in A$.

A consequence relation \vdash has the τ -deduction theorem, for a given unary formula τ , if for every set of formulas $\Pi \cup \{\varphi, \psi\}$, we have

$$\Pi, \varphi \vdash \psi \text{ iff } \Pi \vdash \tau(\varphi) \backslash \psi.$$

Given a unary term τ , we say that a variety of residuated lattices has the τ -deduction theorem if all of its algebras A do (for the same τ): for all $x, y \in A$ and $X \subseteq A$,

$$y \in F(X \cup \{x\})$$
 iff $\tau(x) \setminus y \in F(X)$.

Theorem. A variety of residuated lattices has the τ -deduction theorem iff the corresponding substructural logic does. (EDPC follows.)

An isomorphism class \mathcal{K} of residuated lattices has the $\{\vee, \cdot, 1\}$ -*FEP* if for every $\mathbf{A} \in \mathcal{K}$ and finite subset X of A, there exists a finite algebra $\mathbf{B} \in \mathcal{K}$ that is a $\{\cdot, \vee, 1\}$ -subalgebra of \mathbf{A} , it contains X and $x, y, x \bullet^{\mathbf{A}} y \in X$ implies $x \bullet^{\mathbf{B}} y = x \bullet^{\mathbf{A}} y$, for $\bullet \in \{\wedge, \backslash, /\}$.

Canonical formulas	
000	

A class of residuated lattices has *SI-opremums* if every subdirectly irreducible algebra in the class has an opremum: an element s < 1 where x < 1 implies $x \leq s$, for all $x \in A$.

A consequence relation \vdash has the τ -deduction theorem, for a given unary formula τ , if for every set of formulas $\Pi \cup \{\varphi, \psi\}$, we have

$$\Pi, \varphi \vdash \psi \text{ iff } \Pi \vdash \tau(\varphi) \backslash \psi.$$

Given a unary term τ , we say that a variety of residuated lattices has the τ -deduction theorem if all of its algebras A do (for the same τ): for all $x, y \in A$ and $X \subseteq A$,

$$y \in F(X \cup \{x\})$$
 iff $\tau(x) \setminus y \in F(X)$.

Theorem. A variety of residuated lattices has the τ -deduction theorem iff the corresponding substructural logic does. (EDPC follows.)

An isomorphism class \mathcal{K} of residuated lattices has the $\{\vee, \cdot, 1\}$ -*FEP* if for every $\mathbf{A} \in \mathcal{K}$ and finite subset X of A, there exists a finite algebra $\mathbf{B} \in \mathcal{K}$ that is a $\{\cdot, \vee, 1\}$ -subalgebra of \mathbf{A} , it contains X and $x, y, x \bullet^{\mathbf{A}} y \in X$ implies $x \bullet^{\mathbf{B}} y = x \bullet^{\mathbf{A}} y$, for $\bullet \in \{\wedge, \backslash, /\}$.

We say that \mathcal{K} has the $\{\vee, \cdot, 1\}$ -*bFEP* if there exists a function $f : \mathbb{N} \to \mathbb{N}$ such that for every $\mathbf{A} \in \mathcal{K}$ and every finite subset X of A, there exists a \mathbf{B} that witnesses the $\{\vee, \cdot, 1\}$ -FEP for \mathbf{A} and X, and $|B| \leq f(|X|)$.

Canonical formulas	
000	

Proof idea (for a variety \mathcal{V} satisfying the 3 conditions)

Let $\mathcal{V} \not\models \varphi$, let $\mathsf{Sub}(\varphi)$ be the collection of all subformulas of φ , and let $(\mathbf{A}_1, v_1), \ldots, (\mathbf{A}_m, v_m)$ be all pairs such that the \mathbf{A}_i 's are, up to isomorphism, all algebras in $\mathcal{V}_{\mathsf{Sl}}$ with size up to $f(|\mathsf{Sub}(\varphi)|)$, and v_i is a valuation such that $(\mathbf{A}_i, v_i) \not\models \varphi$.

$$\begin{split} D_i^{\wedge} &:= \{(a, b) \in (\mathsf{Sub}_{v_i}(\varphi))^2 \mid a \wedge b \in \mathsf{Sub}_{v_i}(\varphi) \} \\ D_i^{\backslash} &:= \{(a, b) \in (\mathsf{Sub}_{v_i}(\varphi))^2 \mid a \backslash b \in \mathsf{Sub}_{v_i}(\varphi) \} \\ D_i^{/} &:= \{(a, b) \in (\mathsf{Sub}_{v_i}(\varphi))^2 \mid a / b \in \mathsf{Sub}_{v_i}(\varphi) \} \end{split}$$

 $\Sigma_{\phi} := \{ (\mathbf{A}_i, D_i^{\wedge}, D_i^{\vee}) \mid 1 \leqslant i \leqslant m \} \text{ is the system associated with } \varphi. (\Sigma_{\phi} \text{ is finite.}) \}$

Canonical formulas	
000	

Proof idea (for a variety V satisfying the 3 conditions)

Let $\mathcal{V} \not\models \varphi$, let $\operatorname{Sub}(\varphi)$ be the collection of all subformulas of φ , and let $(\mathbf{A}_1, v_1), \ldots, (\mathbf{A}_m, v_m)$ be all pairs such that the \mathbf{A}_i 's are, up to isomorphism, all algebras in \mathcal{V}_{SI} with size up to $f(|\operatorname{Sub}(\varphi)|)$, and v_i is a valuation such that $(\mathbf{A}_i, v_i) \not\models \varphi$.

$$\begin{split} D_i^{\wedge} &:= \{(a,b) \in (\mathsf{Sub}_{v_i}(\varphi))^2 \mid a \wedge b \in \mathsf{Sub}_{v_i}(\varphi) \} \\ D_i^{\backslash} &:= \{(a,b) \in (\mathsf{Sub}_{v_i}(\varphi))^2 \mid a \backslash b \in \mathsf{Sub}_{v_i}(\varphi) \} \\ D_i^{\prime} &:= \{(a,b) \in (\mathsf{Sub}_{v_i}(\varphi))^2 \mid a / b \in \mathsf{Sub}_{v_i}(\varphi) \} \end{split}$$

 $\Sigma_{\phi} := \{ (\mathbf{A}_i, D_i^{\wedge}, D_i^{\vee}, D_i^{\vee}) \mid 1 \leq i \leq m \} \text{ is the system associated with } \varphi. (\Sigma_{\phi} \text{ is finite.})$ **Main Theorem.** For every formula φ that fails in \mathcal{V} and for every $\mathbf{B} \in \mathcal{V}$:

$\mathbf{B} \models \varphi$ if and only if $\mathbf{B} \models \bigwedge \{ \delta_{\tau}(\mathbf{A}, D) \mid (\mathbf{A}, D) \in \Sigma_{\phi} \}$

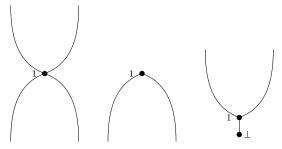
Via contraposition (through a lemma). [1st: no τ -DT needed. 2nd: no { $\lor, \cdot, 1$ }-bFEP.] $\mathbf{B} \not\models \varphi \Leftrightarrow \exists (\mathbf{A}, D) \in \Sigma_{\phi}, \exists \mathbf{C} \in \mathcal{V}_{SI} : \mathbf{A} \rightarrowtail \mathbf{C} \twoheadleftarrow \mathbf{B} \Leftrightarrow \exists (\mathbf{A}, D) \in \Sigma_{\phi}, \mathbf{B} \not\models \delta_{\tau}(\mathbf{A}, D).$

Given $\mathbf{A}, \mathbf{B} \in \mathcal{V}$ and $D^{\wedge}, D^{\setminus}, D^{/} \subseteq A^2$, a *D*-embedding [notation: $h : \mathbf{A} \succ \mathbf{D} \rightarrow \mathbf{B}$] is a map $h : \mathbf{A} \rightarrow \mathbf{B}$, where $D := (D^{\wedge}, D^{\setminus}, D^{/})$, that is injective, preserves \cdot and \vee , $(a, b) \in D^{\wedge}$ implies $h(a \wedge b) = h(a) \wedge h(b)$, $(a, b) \in D^{\setminus}$ implies $h(a \setminus b) = h(a) \setminus h(b)$. Corollary. Every subvariety of \mathcal{V} of is axiomatizable by $\{\vee, \cdot, 1\}$ -canonical formulas.

	Semiconic idempotent •00000	

Semiconic idempotent

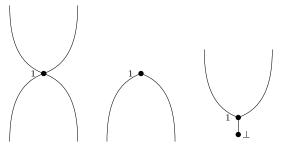
A residuated lattice A is called *conic* if each of its elements is comparable to 1. *Integral* $(x \leq 1)$ residuated lattices and residuated chains (i.e., totally ordered residuated lattices) are examples of conic residuated lattices.



	Semiconic idempotent	

Semiconic idempotent

A residuated lattice **A** is called *conic* if each of its elements is comparable to 1. *Integral* $(x \leq 1)$ residuated lattices and residuated chains (i.e., totally ordered residuated lattices) are examples of conic residuated lattices.



ConldRL denotes the class of conic idempotent $(x^2 = x)$ residuated lattices; subdirect products give the variety S := V(ConldRL) of *semiconic residuated lattices*. The corresponding logic is denoted by sCI; it includes IPC, semilinear logic and and relevance logic with mingle.

The conic idempotent residuated lattices that are integral are precisely the Heyting/Brouwerian algebras: (bounded) residuated lattices satisfying $xy = x \land y$.

Nick Galatos

Canonical formulas for substructural logics

	Semiconic idempotent	
	00000	

SI-opremum and local deduction theorem

Theorem. [G.-Fussner APAL 2024] A semiconic idempotent residuated lattice has an opremum **A** iff it is subdirectly irreducible. So, the variety S has SI-opremums.

	Semiconic idempotent	
	00000	

Theorem. [G.-Fussner APAL 2024] A semiconic idempotent residuated lattice has an opremum **A** iff it is subdirectly irreducible. So, the variety S has SI-opremums.

We define the *inverses* of x as $x^{\ell} := 1/x$ and $x^r := x \setminus 1$. Also, we define:

$$s_1(y) := y \wedge y^{\ell \ell} \wedge y^{rr}, \qquad s_2(y) := y \wedge y^{\ell \ell \ell \ell} \wedge y^{\ell \ell rr} \wedge y^{rr\ell} \wedge y^{rrrr}$$

and, for all n,

$$s_n(y) := y \land \bigwedge \{ y^{c_1 c_1 c_2 c_2 \cdots c_n c_n} \mid c_1, c_2, \dots, c_n \in \{\ell, r\}, \}$$

Also, we define $t_n(y) := s_n(y) \land 1$, we set $s := s_1$ and $t := t_1$, and we write s^n and t^n to denote their *n*-fold compositions.

	Semiconic idempotent	
	00000	

Theorem. [G.-Fussner APAL 2024] A semiconic idempotent residuated lattice has an opremum \mathbf{A} iff it is subdirectly irreducible. So, the variety S has SI-opremums.

We define the *inverses* of x as $x^{\ell} := 1/x$ and $x^r := x \setminus 1$. Also, we define:

$$s_1(y) := y \wedge y^{\ell \ell} \wedge y^{rr}, \qquad s_2(y) := y \wedge y^{\ell \ell \ell \ell} \wedge y^{\ell \ell rr} \wedge y^{rr\ell} \wedge y^{rrrr}$$

and, for all n,

$$s_n(y) := y \land \bigwedge \{ y^{c_1 c_1 c_2 c_2 \cdots c_n c_n} \mid c_1, c_2, \dots, c_n \in \{\ell, r\}, \}$$

Also, we define $t_n(y) := s_n(y) \land 1$, we set $s := s_1$ and $t := t_1$, and we write s^n and t^n to denote their *n*-fold compositions.

Theorem. [G.-Fussner] In all semiconic idempotent residuated lattices, the identities $s^n(x) = s_n(x)$, $t^n(x) = t_n(x)$, and $t^n(x) = s^n(x) \land 1$ hold.

	Semiconic idempotent	
	00000	

Theorem. [G.-Fussner APAL 2024] A semiconic idempotent residuated lattice has an opremum \mathbf{A} iff it is subdirectly irreducible. So, the variety S has SI-opremums.

We define the *inverses* of x as $x^{\ell} := 1/x$ and $x^r := x \setminus 1$. Also, we define:

$$s_1(y) := y \wedge y^{\ell \ell} \wedge y^{rr}, \qquad s_2(y) := y \wedge y^{\ell \ell \ell \ell} \wedge y^{\ell \ell rr} \wedge y^{rr\ell} \wedge y^{rrrr}$$

and, for all n,

$$s_n(y) := y \land \bigwedge \{ y^{c_1 c_1 c_2 c_2 \cdots c_n c_n} \mid c_1, c_2, \dots, c_n \in \{\ell, r\}, \}$$

Also, we define $t_n(y) := s_n(y) \land 1$, we set $s := s_1$ and $t := t_1$, and we write s^n and t^n to denote their *n*-fold compositions.

Theorem. [G.-Fussner] In all semiconic idempotent residuated lattices, the identities $s^n(x) = s_n(x)$, $t^n(x) = t_n(x)$, and $t^n(x) = s^n(x) \land 1$ hold.

Local Deduction Theorem. [G.-Fussner] For every set of formulas $\Pi \cup \{\varphi, \psi\}$, we have: $\Pi, \varphi \vdash_{\mathsf{S}} \psi$ iff $(\exists n \in \mathbb{N}) (\Pi \vdash_{\mathsf{S}} t^n(\varphi) \setminus \psi)$.

	Semiconic idempotent	
	00000	

Theorem. [G.-Fussner APAL 2024] A semiconic idempotent residuated lattice has an opremum \mathbf{A} iff it is subdirectly irreducible. So, the variety S has SI-opremums.

We define the *inverses* of x as $x^{\ell} := 1/x$ and $x^r := x \setminus 1$. Also, we define:

$$s_1(y) := y \wedge y^{\ell \ell} \wedge y^{rr}, \qquad s_2(y) := y \wedge y^{\ell \ell \ell \ell} \wedge y^{\ell \ell rr} \wedge y^{rr\ell \ell} \wedge y^{rrrr}$$

and, for all n,

$$s_n(y) := y \land \bigwedge \{ y^{c_1 c_1 c_2 c_2 \cdots c_n c_n} \mid c_1, c_2, \dots, c_n \in \{\ell, r\}, \}$$

Also, we define $t_n(y) := s_n(y) \wedge 1$, we set $s := s_1$ and $t := t_1$, and we write s^n and t^n to denote their *n*-fold compositions.

Theorem. [G.-Fussner] In all semiconic idempotent residuated lattices, the identities $s^n(x) = s_n(x)$, $t^n(x) = t_n(x)$, and $t^n(x) = s^n(x) \land 1$ hold.

Local Deduction Theorem. [G.-Fussner] For every set of formulas $\Pi \cup \{\varphi, \psi\}$, we have: $\Pi, \varphi \vdash_{\mathsf{S}} \psi$ iff $(\exists n \in \mathbb{N}) (\Pi \vdash_{\mathsf{S}} t^n(\varphi) \setminus \psi)$.

Note that if an element is *central* (ax = xa, for all x) then it is *cyclic* ($a^{\ell} = a^{r}$). $S_{n} = S + (s^{n+1}(x) = s^{n}(x))$ *n*-cyclicity. $S_{n}^{-} = S + (t^{n+1}(x) = t^{n}(x))$ negative *n*-cyclicity.

	Semiconic idempotent	
	00000	

Theorem. [G.-Fussner APAL 2024] A semiconic idempotent residuated lattice has an opremum \bf{A} iff it is subdirectly irreducible. So, the variety S has SI-opremums.

We define the *inverses* of x as $x^{\ell} := 1/x$ and $x^r := x \setminus 1$. Also, we define:

$$s_1(y) := y \wedge y^{\ell \ell} \wedge y^{rr}, \qquad s_2(y) := y \wedge y^{\ell \ell \ell \ell} \wedge y^{\ell \ell rr} \wedge y^{rr\ell \ell} \wedge y^{rrrr}$$

and, for all n,

$$s_n(y) := y \land \bigwedge \{ y^{c_1 c_1 c_2 c_2 \cdots c_n c_n} \mid c_1, c_2, \dots, c_n \in \{\ell, r\}, \}$$

Also, we define $t_n(y) := s_n(y) \wedge 1$, we set $s := s_1$ and $t := t_1$, and we write s^n and t^n to denote their *n*-fold compositions.

Theorem. [G.-Fussner] In all semiconic idempotent residuated lattices, the identities $s^n(x) = s_n(x)$, $t^n(x) = t_n(x)$, and $t^n(x) = s^n(x) \wedge 1$ hold.

Local Deduction Theorem. [G.-Fussner] For every set of formulas $\Pi \cup \{\varphi, \psi\}$, we have: $\Pi, \varphi \vdash_{\mathsf{S}} \psi$ iff $(\exists n \in \mathbb{N}) (\Pi \vdash_{\mathsf{S}} t^n(\varphi) \setminus \psi)$.

Note that if an element is *central* (ax = xa, for all x) then it is *cyclic* ($a^{\ell} = a^{r}$). $S_{n} = S + (s^{n+1}(x) = s^{n}(x))$ *n*-cyclicity. $S_{n}^{-} = S + (t^{n+1}(x) = t^{n}(x))$ negative *n*-cyclicity.

Corollary. For every n, S_n^- has the t_n -deduction theorem. (Also S_n .)

	Semiconic idempotent	
	000000	

Decomposition for conic idempotent residuated lattices

A decomposition system is a structure $(S, \{A_s : s \in S\})$, where S (called the *skeleton*) is an idempotent residuated chain, the A_s 's are disjoint, and, for every $s \in S$, A_s (called a *component*) is a *prelattice* with top element s such that:

- 1. If s has no lower cover in \mathbf{S} , then \mathbf{A}_s is a lattice.
- 2. For negative $s \in S$, the component \mathbf{A}_s is a Brouwerian lattice; we denote by \rightarrow_s its implication.
- 3. If s is not central, then $|A_s| = 1$.

Given a decomposition system $D = (\mathbf{S}, {\mathbf{A}_s : s \in S})$, we consider the ordinal sum $\bigoplus_{s \in S} \mathbf{A}_s$ and for $x \in A_s$ and $y \in A_t$, we define a residuated lattice \mathbf{A}_D on it:

$$xy = \begin{cases} x \land y, \quad s = t \leq 1 \\ x \lor y, \quad s = t > 1 \\ x, \quad st = s \text{ and } s \neq t \\ y, \quad st = t \text{ and } s \neq t \end{cases} \quad y/x = \begin{cases} s^{\ell} \lor y, \quad x \leq y \\ s^{\ell} \land y, \quad t < s, \text{ or } 1 < s = t \text{ and } x \leq y \\ x \rightarrow_{s} y, \quad s = t \leq 1 \text{ and } x \leq y \end{cases}$$

Theorem. [G.-Fussner] Given a decomposition system D, the algebra \mathbf{A}_D is a conic idempotent residuated lattice. Conversely, every conic idempotent residuated lattice is of this form, where \mathbf{S} is the subalgebra of \mathbf{A} based on the set $\gamma[A]$, $A_s = \gamma^{-1}(s)$, for all $s \in S$, and $\gamma(x) = x^{\ell r} \wedge x^{r\ell}$.

	Semiconic idempotent	
	000000	

Decomposition for conic idempotent residuated lattices

A decomposition system is a structure $(S, \{A_s : s \in S\})$, where S (called the *skeleton*) is an idempotent residuated chain, the A_s 's are disjoint, and, for every $s \in S$, A_s (called a *component*) is a *prelattice* with top element s such that:

- 1. If s has no lower cover in \mathbf{S} , then \mathbf{A}_s is a lattice.
- 2. For negative $s \in S$, the component \mathbf{A}_s is a Brouwerian lattice; we denote by \rightarrow_s its implication.
- 3. If s is not central, then $|A_s| = 1$.

Given a decomposition system $D = (\mathbf{S}, {\mathbf{A}_s : s \in S})$, we consider the ordinal sum $\bigoplus_{s \in S} \mathbf{A}_s$ and for $x \in A_s$ and $y \in A_t$, we define a residuated lattice \mathbf{A}_D on it:

$$xy = \begin{cases} x \land y, \quad s = t \leq 1 \\ x \lor y, \quad s = t > 1 \\ x, \quad st = s \text{ and } s \neq t \\ y, \quad st = t \text{ and } s \neq t \end{cases} \quad y/x = \begin{cases} s^{\ell} \lor y, \quad x \leq y \\ s^{\ell} \land y, \quad t < s, \text{ or } 1 < s = t \text{ and } x \leq y \\ x \rightarrow_{s} y, \quad s = t \leq 1 \text{ and } x \leq y \end{cases}$$

Theorem. [G.-Fussner] Given a decomposition system D, the algebra \mathbf{A}_D is a conic idempotent residuated lattice. Conversely, every conic idempotent residuated lattice is of this form, where \mathbf{S} is the subalgebra of \mathbf{A} based on the set $\gamma[A]$, $A_s = \gamma^{-1}(s)$, for all $s \in S$, and $\gamma(x) = x^{\ell r} \wedge x^{r\ell}$. (So, \mathbf{S} can be taken to be *quasi-involutive*: $x^{\ell r} \wedge x^{r\ell} = x$.)

	Semiconic idempotent ○○○●○○	
FEP for S		

	Semiconic idempotent	
FEP for S		

Given a subset X of an algebra $\mathbf{A} \in \text{ConIdRL}$, we represent \mathbf{A} by its decomposition system $(\mathbf{A}^i, \{\gamma^{-1}(s) \mid s \in A^i\})$ and extend X with finitely many more elements of A:

	Semiconic idempotent	
FEP for S		

Given a subset X of an algebra $\mathbf{A} \in \text{ConldRL}$, we represent \mathbf{A} by its decomposition system $(\mathbf{A}^i, \{\gamma^{-1}(s) \mid s \in A^i\})$ and extend X with finitely many more elements of A: we set $X_{\gamma,\sigma} := X \cup \gamma[X] \cup \sigma[X]$, where $\sigma[X]$ is the collection of all subcovers in \mathbf{A}^i of the positive elements of $\gamma[X]$. Also we set: $y_Z = (\bigwedge Z \land 1) \land (\bigvee Z \lor 1)^\ell \land (\bigvee Z \lor 1)^r$.

	Semiconic idempotent 000●00	
EEP for S		

Given a subset X of an algebra $\mathbf{A} \in \text{ConldRL}$, we represent \mathbf{A} by its decomposition system $(\mathbf{A}^i, \{\gamma^{-1}(s) \mid s \in A^i\})$ and extend X with finitely many more elements of A: we set $X_{\gamma,\sigma} := X \cup \gamma[X] \cup \sigma[X]$, where $\sigma[X]$ is the collection of all subcovers in \mathbf{A}^i of the positive elements of $\gamma[X]$. Also we set: $y_Z = (\bigwedge Z \land 1) \land (\bigvee Z \lor 1)^{\ell} \land (\bigvee Z \lor 1)^r$.

Theorem. Let A ConldRL and X a finite subset of A. The $\{\vee, \cdot, 1\}$ -subalgebra B of A generated by $X_{\gamma,\sigma} \cup \{y_{\gamma[X_{\gamma,\sigma}]}\}$ is finite, contains X, and is the reduct of a conic idempotent residuated lattice with skeleton $\gamma[B] = \gamma[X] \cup \sigma[X] \cup \{y_{\gamma[X_{\gamma,\sigma}]}, 1\}$. Also, |B| is uniformly bounded by some function on |X|. So, ConldRL has the $\{\cdot, \vee, 1\}$ -bFEP.

	Semiconic idempotent 000●00	
EED for S		

Given a subset X of an algebra $\mathbf{A} \in \text{ConldRL}$, we represent \mathbf{A} by its decomposition system $(\mathbf{A}^i, \{\gamma^{-1}(s) \mid s \in A^i\})$ and extend X with finitely many more elements of A: we set $X_{\gamma,\sigma} := X \cup \gamma[X] \cup \sigma[X]$, where $\sigma[X]$ is the collection of all subcovers in \mathbf{A}^i of the positive elements of $\gamma[X]$. Also we set: $y_Z = (\bigwedge Z \land 1) \land (\bigvee Z \lor 1)^{\ell} \land (\bigvee Z \lor 1)^r$.

Theorem. Let A ConldRL and X a finite subset of A. The $\{\vee, \cdot, 1\}$ -subalgebra B of A generated by $X_{\gamma,\sigma} \cup \{y_{\gamma[X_{\gamma,\sigma}]}\}$ is finite, contains X, and is the reduct of a conic idempotent residuated lattice with skeleton $\gamma[B] = \gamma[X] \cup \sigma[X] \cup \{y_{\gamma[X_{\gamma,\sigma}]}, 1\}$. Also, |B| is uniformly bounded by some function on |X|. So, ConldRL has the $\{\cdot, \vee, 1\}$ -bFEP.

Lemma. Given a variety \mathcal{V} of residuated lattices, if \mathcal{V}_{SI} has the { $\vee, \cdot, 1$ }-bFEP in \mathcal{V} , then \mathcal{V} has the { $\vee, \cdot, 1$ }-bFEP.

	Semiconic idempotent 000●00	
EED for S		

Given a subset X of an algebra $\mathbf{A} \in \text{ConldRL}$, we represent \mathbf{A} by its decomposition system $(\mathbf{A}^i, \{\gamma^{-1}(s) \mid s \in A^i\})$ and extend X with finitely many more elements of A: we set $X_{\gamma,\sigma} := X \cup \gamma[X] \cup \sigma[X]$, where $\sigma[X]$ is the collection of all subcovers in \mathbf{A}^i of the positive elements of $\gamma[X]$. Also we set: $y_Z = (\bigwedge Z \land 1) \land (\bigvee Z \lor 1)^{\ell} \land (\bigvee Z \lor 1)^r$.

Theorem. Let A ConldRL and X a finite subset of A. The $\{\vee, \cdot, 1\}$ -subalgebra B of A generated by $X_{\gamma,\sigma} \cup \{y_{\gamma[X_{\gamma,\sigma}]}\}$ is finite, contains X, and is the reduct of a conic idempotent residuated lattice with skeleton $\gamma[B] = \gamma[X] \cup \sigma[X] \cup \{y_{\gamma[X_{\gamma,\sigma}]}, 1\}$. Also, |B| is uniformly bounded by some function on |X|. So, ConldRL has the $\{\cdot, \vee, 1\}$ -bFEP.

Lemma. Given a variety \mathcal{V} of residuated lattices, if \mathcal{V}_{SI} has the { $\vee, \cdot, 1$ }-bFEP in \mathcal{V} , then \mathcal{V} has the { $\vee, \cdot, 1$ }-bFEP.

Corollary. The variety S has the $\{\cdot, \lor, 1\}$ -bFEP.

	Semiconic idempotent 000●00	
EED for S		

Given a subset X of an algebra $\mathbf{A} \in \text{ConldRL}$, we represent \mathbf{A} by its decomposition system $(\mathbf{A}^i, \{\gamma^{-1}(s) \mid s \in A^i\})$ and extend X with finitely many more elements of A: we set $X_{\gamma,\sigma} := X \cup \gamma[X] \cup \sigma[X]$, where $\sigma[X]$ is the collection of all subcovers in \mathbf{A}^i of the positive elements of $\gamma[X]$. Also we set: $y_Z = (\bigwedge Z \land 1) \land (\bigvee Z \lor 1)^{\ell} \land (\bigvee Z \lor 1)^r$.

Theorem. Let A ConldRL and X a finite subset of A. The $\{\vee, \cdot, 1\}$ -subalgebra B of A generated by $X_{\gamma,\sigma} \cup \{y_{\gamma[X_{\gamma,\sigma}]}\}$ is finite, contains X, and is the reduct of a conic idempotent residuated lattice with skeleton $\gamma[B] = \gamma[X] \cup \sigma[X] \cup \{y_{\gamma[X_{\gamma,\sigma}]}, 1\}$. Also, |B| is uniformly bounded by some function on |X|. So, ConldRL has the $\{\cdot, \vee, 1\}$ -bFEP.

Lemma. Given a variety \mathcal{V} of residuated lattices, if \mathcal{V}_{SI} has the { $\vee, \cdot, 1$ }-bFEP in \mathcal{V} , then \mathcal{V} has the { $\vee, \cdot, 1$ }-bFEP.

Corollary. The variety S has the $\{\cdot, \lor, 1\}$ -bFEP.

Lemma. If \mathcal{V} is a variety of residuated lattices that has the {v, \cdot , 1}-bFEP and SI-opremums, then \mathcal{V}_{SI}^+ (= \mathcal{V}_{SI} plus the trivial algebra) has the {v, \cdot , 1}-bFEP.

	Semiconic idempotent 000●00	
EED for S		

Given a subset X of an algebra $\mathbf{A} \in \text{ConldRL}$, we represent \mathbf{A} by its decomposition system $(\mathbf{A}^i, \{\gamma^{-1}(s) \mid s \in A^i\})$ and extend X with finitely many more elements of A: we set $X_{\gamma,\sigma} := X \cup \gamma[X] \cup \sigma[X]$, where $\sigma[X]$ is the collection of all subcovers in \mathbf{A}^i of the positive elements of $\gamma[X]$. Also we set: $y_Z = (\bigwedge Z \land 1) \land (\bigvee Z \lor 1)^{\ell} \land (\bigvee Z \lor 1)^r$.

Theorem. Let A ConldRL and X a finite subset of A. The $\{\vee, \cdot, 1\}$ -subalgebra B of A generated by $X_{\gamma,\sigma} \cup \{y_{\gamma[X_{\gamma,\sigma}]}\}$ is finite, contains X, and is the reduct of a conic idempotent residuated lattice with skeleton $\gamma[B] = \gamma[X] \cup \sigma[X] \cup \{y_{\gamma[X_{\gamma,\sigma}]}, 1\}$. Also, |B| is uniformly bounded by some function on |X|. So, ConldRL has the $\{\cdot, \vee, 1\}$ -bFEP.

Lemma. Given a variety \mathcal{V} of residuated lattices, if \mathcal{V}_{SI} has the { $\vee, \cdot, 1$ }-bFEP in \mathcal{V} , then \mathcal{V} has the { $\vee, \cdot, 1$ }-bFEP.

Corollary. The variety S has the $\{\cdot, \lor, 1\}$ -bFEP.

Lemma. If \mathcal{V} is a variety of residuated lattices that has the {v, \cdot , 1}-bFEP and SI-opremums, then \mathcal{V}_{SI}^+ (= \mathcal{V}_{SI} plus the trivial algebra) has the {v, \cdot , 1}-bFEP.

To establish the $\{\vee, \cdot, 1\}$ -bFEP for S_n^- , we need more theory.

	Semiconic idempotent ○○○○●○	
Flow diagrams		

Let a be a positive and b a negative element of an idempotent residuated chain A.

 $a \ L \ b$ means that $\{a, b\}$ forms a left-zero semigroup: ab = a and ba = b. $a \ R \ b$ means that $\{a, b\}$ forms a right-zero semigroup: ab = b and ba = a.

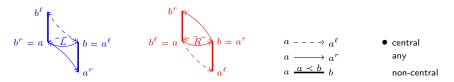
Theorem. [G.-Fussner APAL 2025] Let A be an idempotent residuated chain.

If a is a positive non-central element of \mathbf{A} , then exactly one of the following situations happen.

If b is a negative non-central element of A, then exactly one of the following situations happen.

1.
$$a^{\ell\ell} \prec a^{\ell r} = a \ L \ a^{\ell} \succ a^{r}$$
.
2. $a^{rr} \prec a^{r\ell} = a \ R \ a^{r} \succ a^{\ell}$.

1.
$$b^{\ell} \prec b^{r} L b = b^{r\ell} \succ b^{rr}$$
.
2. $b^{r} \prec b^{\ell} R b = b^{\ell r} \succ b^{\ell \ell}$.



	Semiconic idempotent ○○○○○●	
FEP for S_n^-		

Lemma. An algebra of S is negatively *n*-cyclic iff it satisfies $s^{n+1}(x) \wedge 1 = s^n(x) \wedge 1$.

	Semiconic idempotent 00000●	
FEP for S_n^-		

Lemma. An algebra of S is negatively *n*-cyclic iff it satisfies $s^{n+1}(x) \wedge 1 = s^n(x) \wedge 1$.

Lemma. If $(S, \{A_s : s \in S\})$ is a decomposition system, then the resulting conic idempotent residuated lattice A is (negatively) *n*-cyclic if and only if S is.

	Semiconic idempotent 00000●	
$FEP \text{ for } S^-$		

-EP for S_n^-

Lemma. An algebra of S is negatively *n*-cyclic iff it satisfies $s^{n+1}(x) \wedge 1 = s^n(x) \wedge 1$.

Lemma. If $(S, \{A_s : s \in S\})$ is a decomposition system, then the resulting conic idempotent residuated lattice A is (negatively) *n*-cyclic if and only if S is.

Lemma. Let S be an idempotent residuated chain, $x \in S$ and $n \in \mathbb{N}$.

- 1. x is central iff s(x) = x. If x is noncentral, then s(x) < x.
- 2. $s^n(x)$ is central iff there exists a central element $y \in S$ such that (y, x] has size at most n and consists entirely of noncentral elements; in this case $y = s^n(x)$.

	Semiconic idempotent 00000●	
FEP for S_n^-		

Lemma. An algebra of S is negatively *n*-cyclic iff it satisfies $s^{n+1}(x) \wedge 1 = s^n(x) \wedge 1$.

Lemma. If $(S, \{A_s : s \in S\})$ is a decomposition system, then the resulting conic idempotent residuated lattice A is (negatively) *n*-cyclic if and only if S is.

Lemma. Let S be an idempotent residuated chain, $x \in S$ and $n \in \mathbb{N}$.

- 1. x is central iff s(x) = x. If x is noncentral, then s(x) < x.
- 2. $s^n(x)$ is central iff there exists a central element $y \in S$ such that (y, x] has size at most n and consists entirely of noncentral elements; in this case $y = s^n(x)$.

Theorem. The varieties S_n and S_n^- have the $\{\vee, \cdot, 1\}$ -bFEP.

Idea. We modify the construction of the algebra ${f B}$ by augmenting to the set $X_{\gamma,\sigma}$ with

 $\{x^{\downarrow} \mid x \in \gamma[X] \cup \sigma[X] \text{ and } x \text{ is } n\text{-cyclic in } \mathbf{A}^i\}.$

For an element x in an idempotent residuated chain, we define

 $m_x := \min\{k \in \mathbb{N} : s^k(x) \text{ is central}\}\$

when this minimum exists; in such a case we define $x^{\downarrow} := s^{m_x}(x)$.

	Semiconic idempotent 00000●	
$FEP for S^{-}$		

FEP for S_n^-

Lemma. An algebra of S is negatively *n*-cyclic iff it satisfies $s^{n+1}(x) \wedge 1 = s^n(x) \wedge 1$.

Lemma. If $(S, \{A_s : s \in S\})$ is a decomposition system, then the resulting conic idempotent residuated lattice A is (negatively) *n*-cyclic if and only if S is.

Lemma. Let S be an idempotent residuated chain, $x \in S$ and $n \in \mathbb{N}$.

- 1. x is central iff s(x) = x. If x is noncentral, then s(x) < x.
- 2. $s^n(x)$ is central iff there exists a central element $y \in S$ such that (y, x] has size at most n and consists entirely of noncentral elements; in this case $y = s^n(x)$.

Theorem. The varieties S_n and S_n^- have the $\{v, \cdot, 1\}$ -bFEP.

Idea. We modify the construction of the algebra ${f B}$ by augmenting to the set $X_{\gamma,\sigma}$ with

 $\{x^{\downarrow} \mid x \in \gamma[X] \cup \sigma[X] \text{ and } x \text{ is } n\text{-cyclic in } \mathbf{A}^i\}.$

For an element x in an idempotent residuated chain, we define

 $m_x := \min\{k \in \mathbb{N} : s^k(x) \text{ is central}\}\$

when this minimum exists; in such a case we define $x^{\downarrow} := s^{m_x}(x)$.

Corollary. The varieties S_n and S_n^- admit canonical formulas.

	Weakly commutative and potent
	0000

We generalize the result of [Bezhanishvili-G.-Spada 2017] for residuated lattices that are commutative (xy = yx), integral $(x \le 1)$, and *n*-potent $(x^{n+1} = x^n)$.

	Weakly commutative and potent
	0000

We generalize the result of [Bezhanishvili-G.-Spada 2017] for residuated lattices that are commutative (xy = yx), integral $(x \le 1)$, and *n*-potent $(x^{n+1} = x^n)$.

We remove integrality, we relax *n*-potency to (n,m)-potency $(x^m = x^n)$ and we relax commutativity to weak commutativity such as xyx = xxy and xyx = yxx.

	Weakly commutative and potent
	0000

We generalize the result of [Bezhanishvili-G.-Spada 2017] for residuated lattices that are commutative (xy = yx), integral $(x \le 1)$, and *n*-potent $(x^{n+1} = x^n)$.

We remove integrality, we relax *n*-potency to (n, m)-potency $(x^m = x^n)$ and we relax commutativity to weak commutativity such as xyx = xxy and xyx = yxx.

Given a positive integer s and a non-constant partition $a = (a_0, a_1, \dots, a_s) \in \mathbb{N}^{s+1}$ of s + 1 (i.e., not all a_i 's are equal to 1 and $a_0 + a_1 + \dots + a_s = s + 1$), we define

$$(a) \qquad xy_1xy_2\cdots y_sx = x^{a_0}y_1x^{a_1}y_2\cdots y_sx^{a_s}.$$

For example, (2,0) is the equation $xyx = x^2y$ and (0,2,1) is $xyxzx = yx^2zx$.

	Weakly commutative and potent
	0000

We generalize the result of [Bezhanishvili-G.-Spada 2017] for residuated lattices that are commutative (xy = yx), integral $(x \le 1)$, and *n*-potent $(x^{n+1} = x^n)$.

We remove integrality, we relax *n*-potency to (n, m)-potency $(x^m = x^n)$ and we relax commutativity to weak commutativity such as xyx = xxy and xyx = yxx.

Given a positive integer s and a non-constant partition $a = (a_0, a_1, \ldots, a_s) \in \mathbb{N}^{s+1}$ of s + 1 (i.e., not all a_i 's are equal to 1 and $a_0 + a_1 + \ldots + a_s = s + 1$), we define

$$(a) \qquad xy_1xy_2\cdots y_sx = x^{a_0}y_1x^{a_1}y_2\cdots y_sx^{a_s}.$$

For example, (2,0) is the equation $xyx = x^2y$ and (0,2,1) is $xyxzx = yx^2zx$.

Congruences on a residuated lattice A are bijective to congruence filters (aka deductive filters) F. F is a filter and a submonoid and closed under conjugation: if $x \in F$ and $a \in A$, then $a \setminus xa \land 1$, $ax/a \land 1 \in F$. (Conjugation can be iterated.)

	Weakly commutative and potent
	0000

We generalize the result of [Bezhanishvili-G.-Spada 2017] for residuated lattices that are commutative (xy = yx), integral $(x \le 1)$, and *n*-potent $(x^{n+1} = x^n)$.

We remove integrality, we relax *n*-potency to (n, m)-potency $(x^m = x^n)$ and we relax commutativity to weak commutativity such as xyx = xxy and xyx = yxx.

Given a positive integer s and a non-constant partition $a = (a_0, a_1, \ldots, a_s) \in \mathbb{N}^{s+1}$ of s + 1 (i.e., not all a_i 's are equal to 1 and $a_0 + a_1 + \ldots + a_s = s + 1$), we define

$$(a) \qquad xy_1xy_2\cdots y_sx = x^{a_0}y_1x^{a_1}y_2\cdots y_sx^{a_s}.$$

For example, (2,0) is the equation $xyx = x^2y$ and (0,2,1) is $xyxzx = yx^2zx$.

Congruences on a residuated lattice A are bijective to congruence filters (aka deductive filters) F. F is a filter and a submonoid and closed under conjugation: if $x \in F$ and $a \in A$, then $a \setminus xa \land 1$, $ax/a \land 1 \in F$. (Conjugation can be iterated.)

The congruence filter associated to a congruence θ is $F_{\theta} = \uparrow [1]_{\theta}$. The congruence associated to a filter F is given by: $x \theta_F y$ iff $x \setminus y, y \setminus x \in F$.

	Weakly commutative and potent
	0000

We generalize the result of [Bezhanishvili-G.-Spada 2017] for residuated lattices that are commutative (xy = yx), integral $(x \le 1)$, and *n*-potent $(x^{n+1} = x^n)$.

We remove integrality, we relax *n*-potency to (n, m)-potency $(x^m = x^n)$ and we relax commutativity to weak commutativity such as xyx = xxy and xyx = yxx.

Given a positive integer s and a non-constant partition $a = (a_0, a_1, \ldots, a_s) \in \mathbb{N}^{s+1}$ of s + 1 (i.e., not all a_i 's are equal to 1 and $a_0 + a_1 + \ldots + a_s = s + 1$), we define

$$(a) \qquad xy_1xy_2\cdots y_sx = x^{a_0}y_1x^{a_1}y_2\cdots y_sx^{a_s}.$$

For example, (2,0) is the equation $xyx = x^2y$ and (0,2,1) is $xyxzx = yx^2zx$.

Congruences on a residuated lattice A are bijective to congruence filters (aka deductive filters) F. F is a filter and a submonoid and closed under conjugation: if $x \in F$ and $a \in A$, then $a \setminus xa \wedge 1$, $ax/a \wedge 1 \in F$. (Conjugation can be iterated.)

The congruence filter associated to a congruence θ is $F_{\theta} = \uparrow [1]_{\theta}$. The congruence associated to a filter F is given by: $x \ \theta_F \ y$ iff $x \setminus y, \ y \setminus x \in F$.

The congruence filter generated by a subset X of A, denoted by F(X), is the upward closure of all products of iterated conjugates of elements of X.

		Weakly commutative and potent ○●○○
deal and an		

τ -deduction

A variety is called *s*-subcommutative if it satisfies $(x \wedge 1)^s y = y(x \wedge 1)^s$; it is called subcommutative if it is *s*-subcommutative for some $s \in \mathbb{Z}^+$.

		Weakly commutative and potent ○●○○
au-deduction		

A weak commutativity equation is called *initial* if it is of the form

 $xy_1x\cdots xy_sx = x^{a_0}y_1\cdots x^{a_{s-1}}y_s$

for some $s \in \mathbb{Z}^+$; i.e., the last coordinate a_s of the vector \vec{a} is zero. Likewise, a *final* weak commutativity equation is one of the form (the first coordinate a_0 of a is zero)

 $xy_1x\cdots xy_sx = y_1\cdots x^{a_{s-1}}y_sx^{a_s}$

		Weakly commutative and potent ○●○○
au-deduction		

A weak commutativity equation is called *initial* if it is of the form

 $xy_1x\cdots xy_sx = x^{a_0}y_1\cdots x^{a_{s-1}}y_s$

for some $s \in \mathbb{Z}^+$; i.e., the last coordinate a_s of the vector \vec{a} is zero. Likewise, a *final* weak commutativity equation is one of the form (the first coordinate a_0 of a is zero)

 $xy_1x\cdots xy_sx = y_1\cdots x^{a_{s-1}}y_sx^{a_s}$

Lemma. The conjunction of an initial and of a final weak commutativity equations (could be the same equation) implies subcommutativity. For example xyx = xxy and xyx = yxx; or $xyxyzx = yx^3z$ by itself.

		Weakly commutative and potent ○●○○
τ -deduction		

A weak commutativity equation is called *initial* if it is of the form

 $xy_1x\cdots xy_sx = x^{a_0}y_1\cdots x^{a_{s-1}}y_s$

for some $s \in \mathbb{Z}^+$; i.e., the last coordinate a_s of the vector \vec{a} is zero. Likewise, a *final* weak commutativity equation is one of the form (the first coordinate a_0 of a is zero)

 $xy_1x\cdots xy_sx = y_1\cdots x^{a_{s-1}}y_sx^{a_s}$

Lemma. The conjunction of an initial and of a final weak commutativity equations (could be the same equation) implies subcommutativity. For example xyx = xxy and xyx = yxx; or $xyxyzx = yx^3z$ by itself.

Note that (n, m)-potency $(x^n = x^m)$ implies negative k-potency $((x \land 1)^{k+1} = (x \land 1)^k)$, for $k = \min\{n, m\}$.

		Weakly commutative and potent
τ -deduction		

A weak commutativity equation is called *initial* if it is of the form

 $xy_1x\cdots xy_sx = x^{a_0}y_1\cdots x^{a_{s-1}}y_s$

for some $s \in \mathbb{Z}^+$; i.e., the last coordinate a_s of the vector \vec{a} is zero. Likewise, a *final* weak commutativity equation is one of the form (the first coordinate a_0 of a is zero)

 $xy_1x\cdots xy_sx = y_1\cdots x^{a_{s-1}}y_sx^{a_s}$

Lemma. The conjunction of an initial and of a final weak commutativity equations (could be the same equation) implies subcommutativity. For example xyx = xxy and xyx = yxx; or $xyxyzx = yx^3z$ by itself.

Note that (n, m)-potency $(x^n = x^m)$ implies negative k-potency $((x \land 1)^{k+1} = (x \land 1)^k)$, for $k = \min\{n, m\}$.

Lemma. If **A** is a subcommutative, negatively k-potent residuated lattice and $X \cup \{x_0\} \subseteq A$, then $x_0 \in F(X)$ iff there exists $r \in \mathbb{N}$ and $x_1, \ldots, x_r \in X$ with $(x_1 \land \cdots \land x_r \land 1)^k \leq x_0$.

		Weakly commutative and potent ○●○○
τ -deduction		

A weak commutativity equation is called *initial* if it is of the form

 $xy_1x\cdots xy_sx = x^{a_0}y_1\cdots x^{a_{s-1}}y_s$

for some $s \in \mathbb{Z}^+$; i.e., the last coordinate a_s of the vector \vec{a} is zero. Likewise, a *final* weak commutativity equation is one of the form (the first coordinate a_0 of a is zero)

 $xy_1x\cdots xy_sx = y_1\cdots x^{a_{s-1}}y_sx^{a_s}$

Lemma. The conjunction of an initial and of a final weak commutativity equations (could be the same equation) implies subcommutativity. For example xyx = xxy and xyx = yxx; or $xyxyzx = yx^3z$ by itself.

Note that (n, m)-potency $(x^n = x^m)$ implies negative k-potency $((x \land 1)^{k+1} = (x \land 1)^k)$, for $k = \min\{n, m\}$.

Lemma. If A is a subcommutative, negatively k-potent residuated lattice and $X \cup \{x_0\} \subseteq A$, then $x_0 \in F(X)$ iff there exists $r \in \mathbb{N}$ and $x_1, \ldots, x_r \in X$ with $(x_1 \wedge \cdots \wedge x_r \wedge 1)^k \leq x_0$.

Lemma. Every subcommutative negatively k-potent variety of residuated lattices has the τ -deduction theorem, for $\tau(\varphi) = (\varphi \land 1)^k$.

		Weakly commutative and potent ○○●○
SI-opremum		

Lemma. If a and b are negative elements of a subcommutative residuated lattice, then: $a \in F(b)$ iff there exists $n_b \in \mathbb{N}$ with $b^{n_b} \leq a$.

		Weakly commutative and potent
SI-opremum		

Lemma. If a and b are negative elements of a subcommutative residuated lattice, then: $a \in F(b)$ iff there exists $n_b \in \mathbb{N}$ with $b^{n_b} \leq a$.

Lemma. Let A be a negatively potent subcommutative residuated lattice. Then, A is subdirectly irreducible iff A has an opremum.

		Weakly commutative and potent ○○●○
SI-opremum		

Lemma. If a and b are negative elements of a subcommutative residuated lattice, then: $a \in F(b)$ iff there exists $n_b \in \mathbb{N}$ with $b^{n_b} \leq a$.

Lemma. Let A be a negatively potent subcommutative residuated lattice. Then, A is subdirectly irreducible iff A has an opremum.

Proof. For $a, b \in A$ with a, b < 1 we show that $a \lor b < 1$. We have $a^{n_a} \leq z$ and $b^{n_b} \leq z$. For $t := n_a + n_b$, we have $t \geq n_a, n_b$, so $a^t \leq a^{n_a}$ and $b^t \leq b^{n_b}$.

		Weakly commutative and potent ○○●○
CI		

SI-opremum

Lemma. If a and b are negative elements of a subcommutative residuated lattice, then: $a \in F(b)$ iff there exists $n_b \in \mathbb{N}$ with $b^{n_b} \leq a$.

Lemma. Let A be a negatively potent subcommutative residuated lattice. Then, A is subdirectly irreducible iff A has an opremum.

Proof. For $a, b \in A$ with a, b < 1 we show that $a \lor b < 1$. We have $a^{n_a} \leq z$ and $b^{n_b} \leq z$. For $t := n_a + n_b$, we have $t \geq n_a, n_b$, so $a^t \leq a^{n_a}$ and $b^t \leq b^{n_b}$. Since multiplication distributes over joins,

$$(a \lor b)^{2t} = \bigvee \{c_{i_1} \cdot \ldots \cdot c_{i_{2t}} \mid i_1, \ldots, i_{2t} \in \mathbf{N}, c_{i_1}, \ldots, c_{i_{2t}} \in \{a, b\}\}$$

Each $c_{i_1} \cdot \ldots \cdot c_{i_{2t}}$ contains at least *t*-many *a*'s or *t*-many *b*'s, so by monotonicity and integrality,

$$c_{i_1} \cdot \ldots \cdot c_{i_{2t}} \leqslant a^t$$
 or $c_{i_1} \cdot \ldots \cdot c_{i_{2t}} \leqslant b^t$,

thus $(a \lor b)^{2t} \leqslant a^t \lor b^t \leqslant a^{n_a} \lor b^{n_b} \leqslant z < 1$. Therefore, $a \lor b < 1$: 1 is join irreducible.

		Weakly commutative and potent
CL		

SI-opremum

Lemma. If a and b are negative elements of a subcommutative residuated lattice, then: $a \in F(b)$ iff there exists $n_b \in \mathbb{N}$ with $b^{n_b} \leq a$.

Lemma. Let A be a negatively potent subcommutative residuated lattice. Then, A is subdirectly irreducible iff A has an opremum.

Proof. For $a, b \in A$ with a, b < 1 we show that $a \lor b < 1$. We have $a^{n_a} \leq z$ and $b^{n_b} \leq z$. For $t := n_a + n_b$, we have $t \geq n_a, n_b$, so $a^t \leq a^{n_a}$ and $b^t \leq b^{n_b}$. Since multiplication distributes over joins,

$$(a \lor b)^{2t} = \bigvee \{c_{i_1} \cdot \ldots \cdot c_{i_{2t}} \mid i_1, \ldots, i_{2t} \in \mathbf{N}, c_{i_1}, \ldots, c_{i_{2t}} \in \{a, b\}\}$$

Each $c_{i_1} \cdot \ldots \cdot c_{i_{2t}}$ contains at least *t*-many *a*'s or *t*-many *b*'s, so by monotonicity and integrality,

$$c_{i_1} \cdot \ldots \cdot c_{i_{2t}} \leqslant a^t$$
 or $c_{i_1} \cdot \ldots \cdot c_{i_{2t}} \leqslant b^t$,

thus $(a \lor b)^{2t} \le a^t \lor b^t \le a^{n_a} \lor b^{n_b} \le z < 1$. Therefore, $a \lor b < 1$: 1 is join irreducible. If D is a chain of strictly negative elements, then for $\Phi = D^n$ (choice functions):

$$\left(\bigvee D\right)^{k} = \bigvee \{\varphi(1) \cdot \ldots \cdot \varphi(k) \mid \varphi \in \Phi\} = \bigvee \{\left(\varphi(1) \lor \cdots \lor \varphi(k)\right)^{k} \mid \varphi \in \Phi\} \leqslant z$$

		Weakly commutative and potent 000●
FEP		

$$w_{1,s+1} = x^{a_0} y_1 x^{a_1} y_2 \cdots y_s x^{a_s}.$$

 $\mathcal{K}(a)$ denotes the variety of monoids axiomatized by (a).

		Weakly commutative and potent ○○○●
FEP		

$$w_{1,s+1} = x^{a_0} y_1 x^{a_1} y_2 \cdots y_s x^{a_s}.$$

 $\mathcal{K}(a)$ denotes the variety of monoids axiomatized by (a). For $p, q, \ell \in \mathbb{N}$ with $p + q < \ell$, $\mathcal{K}(p, q, \ell)$ denotes the variety of monoids axiomatized by the system of equations

$$w_1ww_2 = w_1w'w_2$$

where $del_x(w) = del_x(w') = y_p y_{p+1} \cdots y_{\ell-q}$, $|w|_x = |w'|_x = \ell - p - q$, $w_1 = w_{1,p}$ and $w_2 = w_{\ell-q+1,\ell}$.

 $\begin{array}{ll} \text{Theorem. [G.-Cardona IJAC 2015] } \mathcal{K}(a) \text{ is a subvariety of } \mathcal{K}(p_a,q_a,2s) \text{ for all } (a), \\ \text{where} \quad p_a:=\max\{j \mid \forall i < j, \ a_i=1\} \quad \text{and} \quad q_a:=\max\{j \mid \forall i > s-j, \ a_i=1\}. \end{array}$

		Weakly commutative and potent ○○○●
FEP		

$$w_{1,s+1} = x^{a_0} y_1 x^{a_1} y_2 \cdots y_s x^{a_s}.$$

 $\mathcal{K}(a)$ denotes the variety of monoids axiomatized by (a). For $p, q, \ell \in \mathbb{N}$ with $p + q < \ell$, $\mathcal{K}(p, q, \ell)$ denotes the variety of monoids axiomatized by the system of equations

$$w_1ww_2 = w_1w'w_2$$

where $del_x(w) = del_x(w') = y_p y_{p+1} \cdots y_{\ell-q}$, $|w|_x = |w'|_x = \ell - p - q$, $w_1 = w_{1,p}$ and $w_2 = w_{\ell-q+1,\ell}$.

Theorem. [G.-Cardona IJAC 2015] $\mathcal{K}(a)$ is a subvariety of $\mathcal{K}(p_a, q_a, 2s)$ for all (a), where $p_a := \max\{j \mid \forall i < j, a_i = 1\}$ and $q_a := \max\{j \mid \forall i > s - j, a_i = 1\}$. **Theorem.** The subvariety of $\mathcal{K}(p, q, \ell)$, where $p + q < \ell$, axiomatized by $x^n = x^m$ for $n \neq m$, is locally finite.

		Weakly commutative and potent ○○○●
FEP		

$$w_{1,s+1} = x^{a_0} y_1 x^{a_1} y_2 \cdots y_s x^{a_s}.$$

 $\mathcal{K}(a)$ denotes the variety of monoids axiomatized by (a). For $p, q, \ell \in \mathbb{N}$ with $p + q < \ell$, $\mathcal{K}(p, q, \ell)$ denotes the variety of monoids axiomatized by the system of equations

$$w_1ww_2 = w_1w'w_2$$

where $del_x(w) = del_x(w') = y_p y_{p+1} \cdots y_{\ell-q}$, $|w|_x = |w'|_x = \ell - p - q$, $w_1 = w_{1,p}$ and $w_2 = w_{\ell-q+1,\ell}$.

Theorem. [G.-Cardona IJAC 2015] $\mathcal{K}(a)$ is a subvariety of $\mathcal{K}(p_a, q_a, 2s)$ for all (a), where $p_a := \max\{j \mid \forall i < j, a_i = 1\}$ and $q_a := \max\{j \mid \forall i > s - j, a_i = 1\}$. **Theorem.** The subvariety of $\mathcal{K}(p, q, \ell)$, where $p + q < \ell$, axiomatized by $x^n = x^m$ for $n \neq m$, is locally finite.

Theorem. Any variety axiomatized by (n, m)-potency, a weak commutativity equation, and a (possibly empty) set of $\{\vee, \cdot, 1\}$ -equations has the $\{\vee, \cdot, 1\}$ -bFEP.

Corollary. Any variety axiomatized by (n,m)-potency, an initial and a final weak commutativity equation, and any set of $\{\vee, \cdot, 1\}$ -equations has canonical formulas.