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Goal

Using a generalization of Jankov formulas [Jankov 1968], [Chagrov-Zakharyaschev]
axiomatized all varieties of Intuitionistic logic/Heyting algebras in a unifrom way by
canonical formulas.

Heyting algebras admit relational semantics (Kripke frames).
Unfortunately there is no equally rebust theory for relational semantics for residuated
lattices. Fortunately, [Bezhanishvili-Bezhanishvili RSL 2009] recast the proof in algebraic
terms.

In [Bezhanishvili-G.-Spada AU 2017] we extended this to varieties of k-potent
commutative integral residuated lattices.

Goal: To identify a sufficient condition for a substructural logic to admit canonical
formulas. Also, to give two examples of such a situation.

Benefits:

1. Canonical formulas provide a uniform way for axiomatizing all subvarieties.
2. The axiomatization has semantical meaning (instead of being ‘pure syntax’).
3. The canonical formula for a variety can be effectively computed (by constructing all

subdirectly irreducible algebras up to a certain cardinality).
4. Canonical formulas are in the N4 level of the substructural formula hierarchy and

they all have a uniform shape. So for varieties admitting canonical formulas, the
substructural hierarchy stabilizes.
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Substructural logics

Classical logic studies truth.

Intuitionistic logic (Brouwer, Heyting) deals with provability or constructibility.
The algebraic models are Heyting algebras.

Many-valued logic ( Lukasiewicz) allows different degrees of truth. [Ulam’s game]
rxÑ pxÑ yqs Ñ pxÑ yq is not a theorem. The algebraic models fail x ¤ x � x.

Relevance logic (Anderson, Belnap) deals with relevance.

pÑ pq Ñ qq is not a theorem. The algebraic models do not satisfy integrality x ¤ 1.

pÑ p pÑ qq [or pp �  pq Ñ q] is not a theorem, where  p � pÑ 0. The algebraic
models do not satisfy 0 ¤ x.

Linear logic (Girard) studies preservation of resourses.
pÑ ppÑ pq [or pp � pq Ñ p] and pÑ pp � pq are not theorems.
The algebraic models do not satisfy mingle x2 ¤ x nor contraction x ¤ x2.

The calculi for substructural logics have variants used in:

Mathematical linguistics: Context-free grammars, pregroups. (Lambek, Buzskowski)

CS: Memory allocation, pointer management, concurrent programming. (Separation
logic, bunched implication logic).
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Gentzen’s system LJ for intuitionistic logic

A sequent is an expression a1, . . . , an ñ a0, where a’s are formulas. For a, b, c P Fm,
x, y, z, x1, x2 P Fm

�, we have the inference rules:

xñ a y, a, zñ c
y, x, zñ c (cut) añ a (Id)

y, x1, x2, zñ c
y, x2, x1, zñ c (e)

y, zñ c
y, x, zñ c (w)

y, x, x, zñ c
y, x, zñ c (c)

y, a, zñ c

y, a^ b, zñ c
(^L`)

y, b, zñ c

y, a^ b, zñ c
(^Lr)

xñ a xñ b
xñ a^ b

(^R)

y, a, zñ c y, b, zñ c

y, a_ b, zñ c
(_L)

xñ a
xñ a_ b

(_R`)
xñ b

xñ a_ b
(_Rr)

xñ a y, b, zñ c

y, x, aÑ b, zñ c
(ÑL)

a, xñ b

xñ aÑ b
(ÑR)

y, zñ c

y, 1, zñ c
(1L)

εñ 1
(1R)
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Basic substructural logics

In LJ, the sequent a1, . . . , an ñ a0 is provable iff the sequent a1 ^ . . .^ an ñ a0 is,
so comma corresponds to ^. The proof system FL of Full Lambek calculus is obtained
from Gentzen’s proof system LJ for intuitionistic logic by removing the three basic
structural rules:

urx, ys ñ c

ury, xs ñ c
peq

(exchange) rxÑ py Ñ zqs Ñ ry Ñ pxÑ zqs xy ¤ yx

urx, xs ñ c

urxs ñ c
pcq

(contraction) rxÑ pxÑ yqs Ñ pxÑ yq x ¤ x2

urεs ñ c

urxs ñ c
piq

(integrality) y Ñ pxÑ yq x ¤ 1

In FL, comma and ^ do not correspond any more. But we can conservatively add a new
connective � (fusion or multiplication) that does correspond to comma and rules:

y, a, b, zñ c

y, a � b, zñ c
(�L)

xñ a yñ b

x, yñ a � b
(�R)

Also, aÑ b splits into azb and b{a.
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FL

xñ a y, a,zñ c
y, x,zñ c (cut) añ a (Id)

y, a,zñ c

y, a^ b,zñ c
(^L`)

y, b,zñ c

y, a^ b,zñ c
(^Lr)

xñ a xñ b
xñ a^ b

(^R)

y, a,zñ c y, b,zñ c

y, a_ b,zñ c
(_L)

xñ a
xñ a_ b

(_R`)
xñ b

xñ a_ b
(_Rr)

xñ a y, b,zñ c

y, x, pazbq,zñ c
(zL)

a, xñ b

xñ azb
(zR)

xñ a y, b,zñ c

y, pb{aq, x,zñ c
({L)

x, añ b

xñ b{a
({R)

y, a, b,zñ c

y, a � b,zñ c
(�L)

xñ a yñ b

x, yñ a � b
(�R)

y, zñ c

y, 1,zñ c
(1L)

εñ 1
(1R)

where a, b, c P Fm, x, y, z P Fm�. Extensions of FL are known as substructural logics.
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Residuated lattices

A residuated lattice is an algebra A � pA,^,_, �, z, {, 1q such that

pA,^,_q is a lattice,

pA, �, 1q is a monoid and

for all a, b, c P A, ab ¤ c ô b ¤ azc ô a ¤ c{b.

Examples:

1. Boolean and Heyting algebras, where x � y � x^ y and xÑ y � xzy � y{x.
We also add a constant 0 and define  x � xÑ 0.

2. Also, MV-algebras and other algebras of substructural logics:
Linear, relevance, MV, BL, MTL, where multiplication is strong conjunction.

3. Lattice-ordered groups: xzy � x�1y and y{x � yx�1. (and `-pregroups)

4. Quantales (relating to quantal-valued model theory, C�-algebras)

5. Relation algebras: RzS � pRY � Scqc, S{R � pSc �RYqc.

6. Lattices of ideals of rings, under the usual multiplication and division of ideals.
(Ward and Dilworth 1930’s)

7. Computer Science: Action algebras, Kleene algebras with tests. (Pratt, Kozen)

Varieties of residuated lattices form equivalent algebraic semantics (a la
Lindenbaum-Blok-Pigozzi) for various substructural logics.
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Beyond sequent rules

By results of [G.-Jipsen, TAMS, 2013], t_, �, 1u-equations give rise to analytic structural
sequent rules (cut elimination holds).

By results of [Ciabbatoni-G.-Terui, LICS, 2008] and [G.-Ciabbatoni-Terui, APAL, 2012]
strongly analytic sequent rules are essentially defined only by t_, �, 1u-equations.

A hypersequent is a multiset s1 | � � � | sm of sequents si. Hypersequent structural rules:

H | s11 H | s12 . . . H | s1n

H | s1 | � � � | sm

Hypersequent calculi allow for the proof-theoretic study of many more extensions, such as
the Gödel-Dummet logic modeled by pxÑ yq _ py Ñ xq, as | is a form of disjunction.

A series of papers on Algebraic Proof Theory by Ciabbatoni-G.-Terui: [LICS, 2008], [AU,
2011], [APAL, 2012], [APAL, 2017] studies

1. The proof theory of (sequent and) hypersequent calculi (cut elimination), including
proceedures for obtaining analytic rules from axioms

2. connections to algebraic completions (MacNeille, hyper-MacNeille)
3. connections to (positive universal) classes of FSIs of the corresponding variety
4. relational semantics (residuated hyperframes)

A blueprint for more expressive axioms is given by the substructural hierarchy (similar to
the arithmetical hierarchy) is defined by alternations of positive and negative connectives.
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2011], [APAL, 2012], [APAL, 2017] studies

1. The proof theory of (sequent and) hypersequent calculi (cut elimination), including
proceedures for obtaining analytic rules from axioms

2. connections to algebraic completions (MacNeille, hyper-MacNeille)
3. connections to (positive universal) classes of FSIs of the corresponding variety
4. relational semantics (residuated hyperframes)

A blueprint for more expressive axioms is given by the substructural hierarchy (similar to
the arithmetical hierarchy) is defined by alternations of positive and negative connectives.
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Substructural hierarchy
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The sets Pn,Nn of formulas are defined by:
(0) P0 � N0 � the set of variables

(P1) Nn � Pn�1

(P2) a, b P Pn�1 ñ a_ b, a � b, 1 P Pn�1

(N1) Pn � Nn�1

(N2) a, b P Nn�1 ñ a^ b P Nn�1

(N3) a P Pn�1, b P Nn�1 ñ azb, b{a, 0 P Nn�1

Pn�1 � xNny�,± ; Nn�1 � xPny�,Pn�1z,{Pn�1

Pn � Pn�1,Nn � Nn�1,
�

Pn �
�

Nn � Fm

P1-reduced:
�±

pi

N1-reduced:
�
pp1p2 � � � pnzr{q1q2 � � � qmq

p1p2 � � � pnq1q2 � � � qm ¤ r

Sequent: a1, a2, . . . , an ñ a0 (ai P Fm)

Partial attempts to handle the N4 level include:
[G.-Metcalfe, APAL 2016] proof theory and complexity (coNP-complete) for `-groups.
[Colacito-G.-Metcalfe, Santchi JoA 2022] decidability for distributive `-monoids.
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The formulas

Given a finite algebra A and D^, Dz, D{ � A2, for each a P A, we introduce a new
variable Xa, and we set:

Γ :�pXK Ø Kq ^ pX1 Ø 1q^©
tXa�b Ø Xa �Xb | a, b P Au^©
tXa_b Ø Xa _Xb | a, b P Au^©
tXa^b Ø Xa ^Xb | pa, bq P D

^u^
©
tXazb Ø XazXb | pa, bq P D

zu^
©
tXa{b Ø Xa{Xb | pa, bq P D

{u

and

∆ :�
ª
tXazXb ^ 1 | a, b P A with a ¦ bu.

For brevity we set D :� pD^, Dz, D{q. The t_, �, 1u-canonical formula δτ pA, Dq
associated with A, D, and a unary term τ is defined as follows: (and is in N4)

δτ pA, Dq :� τpΓqz∆.
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The 3 properties: necessary condition

A class of residuated lattices has SI-opremums if every subdirectly irreducible algebra in
the class has an opremum: an element s   1 where x   1 implies x ¤ s, for all x P A.

A consequence relation $ has the τ -deduction theorem, for a given unary formula τ , if
for every set of formulas ΠY tϕ,ψu, we have

Π, ϕ $ ψ iff Π $ τpϕqzψ.

Given a unary term τ , we say that a variety of residuated lattices has the τ -deduction
theorem if all of its algebras A do (for the same τ): for all x, y P A and X � A,

y P F pX Y txuq iff τpxqzy P F pXq.

Theorem. A variety of residuated lattices has the τ -deduction theorem iff the
corresponding substructural logic does. (EDPC follows.)

An isomorphism class K of residuated lattices has the t_, �, 1u-FEP if for every A P K
and finite subset X of A, there exists a finite algebra B P K that is a t�,_, 1u-subalgebra
of A, it contains X and x, y, x 
A y P X implies x 
B y � x 
A y, for 
 P t^, z, {u.

We say that K has the t_, �, 1u-bFEP if there exists a function f : NÑ N such that for
every A P K and every finite subset X of A, there exists a B that witnesses the
t_, �, 1u-FEP for A and X, and |B| ¤ fp|X|q.
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Proof idea (for a variety V satisfying the 3 conditions)

Let V * ϕ, let Subpϕq be the collection of all subformulas of ϕ, and let
pA1, v1q, . . . , pAm, vmq be all pairs such that the Ai’s are, up to isomorphism, all
algebras in VSI with size up to fp| Subpϕq|q, and vi is a valuation such that pAi, viq * ϕ.

D^
i :� tpa, bq P pSubvipϕqq

2 | a^ b P Subvipϕqu

D
z
i :� tpa, bq P pSubvipϕqq

2 | azb P Subvipϕqu

D
{
i :� tpa, bq P pSubvipϕqq

2 | a{b P Subvipϕqu

Σφ :� tpAi, D
^
i , D

z
i , D

{
iq | 1 ¤ i ¤ mu is the system associated with ϕ. (Σφ is finite.)

Main Theorem. For every formula ϕ that fails in V and for every B P V:

B ( ϕ if and only if B (
©
tδτ pA, Dq | pA, Dq P Σφu

Via contraposition (through a lemma). [1st: no τ -DT needed. 2nd: no t_, �, 1u-bFEP.]

B * ϕ ô DpA, Dq P Σφ, DC P VSI : A D C � B ô DpA, Dq P Σφ, B * δτ pA, Dq.

Given A,B P V and D^, Dz, D{ � A2, a D-embedding [notation: h : A D B] is a
map h : AÑ B, where D :� pD^,Dz, D{q, that is injective, preserves � and _,
pa, bq P D^ implies hpa^ bq � hpaq ^ hpbq, pa, bq P Dz implies hpazbq � hpaqzhpbq.
Corollary. Every subvariety of V of is axiomatizable by t_, �, 1u-canonical formulas.
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Semiconic idempotent

A residuated lattice A is called conic if each of its elements is comparable to 1. Integral
(x ¤ 1) residuated lattices and residuated chains (i.e., totally ordered residuated lattices)
are examples of conic residuated lattices.

1 1

1

K

ConIdRL denotes the class of conic idempotent (x2 � x) residuated lattices; subdirect
products give the variety S :� VpConIdRLq of semiconic residuated lattices. The
corresponding logic is denoted by sCI; it includes IPC, semilinear logic and and relevance
logic with mingle.

The conic idempotent residuated lattices that are integral are precisely the
Heyting/Brouwerian algebras: (bounded) residuated lattices satisfying xy � x^ y.
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SI-opremum and local deduction theorem

Theorem. [G.-Fussner APAL 2024] A semiconic idempotent residuated lattice has an
opremum A iff it is subdirectly irreducible. So, the variety S has SI-opremums.

We define the inverses of x as x` :� 1{x and xr :� xz1. Also, we define:

s1pyq :� y ^ y`` ^ yrr, s2pyq :� y ^ y```` ^ y``rr ^ yrr`` ^ yrrrr.

and, for all n,

snpyq :� y ^
©
tyc1c1c2c2���cncn | c1, c2, . . . , cn P t`, ru, u

Also, we define tnpyq :� snpyq ^ 1, we set s :� s1 and t :� t1, and we write sn and tn to
denote their n-fold compositions.

Theorem. [G.-Fussner] In all semiconic idempotent residuated lattices, the identities
snpxq � snpxq, t

npxq � tnpxq, and tnpxq � snpxq ^ 1 hold.

Local Deduction Theorem. [G.-Fussner] For every set of formulas ΠY tϕ,ψu, we
have: Π, ϕ $S ψ iff pDn P NqpΠ $S t

npϕqzψq.

Note that if an element is central (ax � xa, for all x) then it is cyclic (a` � ar).
Sn � S�psn�1pxq � snpxqq n-cyclicity. S�n � S�ptn�1pxq � tnpxqq negative n-cyclicity.

Corollary. For every n, S�n has the tn-deduction theorem. (Also Sn.)
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have: Π, ϕ $S ψ iff pDn P NqpΠ $S t

npϕqzψq.

Note that if an element is central (ax � xa, for all x) then it is cyclic (a` � ar).
Sn � S�psn�1pxq � snpxqq n-cyclicity. S�n � S�ptn�1pxq � tnpxqq negative n-cyclicity.

Corollary. For every n, S�n has the tn-deduction theorem. (Also Sn.)
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Decomposition for conic idempotent residuated lattices

A decomposition system is a structure pS, tAs : s P Suq, where S (called the skeleton) is
an idempotent residuated chain, the As’s are disjoint, and, for every s P S, As (called a
component) is a prelattice with top element s such that:

1. If s has no lower cover in S, then As is a lattice.

2. For negative s P S, the component As is a Brouwerian lattice; we denote by Ñs its
implication.

3. If s is not central, then |As| � 1.

Given a decomposition system D � pS, tAs : s P Suq, we consider the ordinal sumÀ
sPS As and for x P As and y P At, we define a residuated lattice AD on it:

xy �

$'''&
'''%

x^ y, s � t ¤ 1

x_ y, s � t ¡ 1

x, st � s and s � t

y, st � t and s � t

y{x �

$'&
'%

s` _ y, x ¤ y

s` ^ y, t   s, or 1   s � t and x ¦ y

xÑs y, s � t ¤ 1 and x ¦ y

Theorem. [G.-Fussner] Given a decomposition system D, the algebra AD is a conic
idempotent residuated lattice. Conversely, every conic idempotent residuated lattice is of
this form, where S is the subalgebra of A based on the set γrAs, As � γ�1psq, for all
s P S, and γpxq � x`r ^ xr`.

(So, S can be taken to be quasi-involutive: x`r ^ xr` � x.)
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FEP for S

Lemma. If A P ConIdRL, then the t_, �, 1u-subalgebra of A generated by a given finite

subset X of A has at most 22|X| elements.

Given a subset X of an algebra A P ConIdRL, we represent A by its decomposition
system pAi, tγ�1psq | s P Aiuq and extend X with finitely many more elements of A: we
set Xγ,σ :� X Y γrXs Y σrXs, where σrXs is the collection of all subcovers in Ai of the
positive elements of γrXs. Also we set: yZ � p

�
Z ^ 1q ^ p

�
Z _ 1q` ^ p

�
Z _ 1qr.

Theorem. Let AConIdRL and X a finite subset of A. The t_, �, 1u-subalgebra B of A
generated by Xγ,σ Y tyγrXγ,σsu is finite, contains X, and is the reduct of a conic
idempotent residuated lattice with skeleton γrBs � γrXs Y σrXs Y tyγrXγ,σs, 1u. Also,
|B| is uniformly bounded by some function on |X|. So, ConIdRL has the t�,_, 1u-bFEP.

Lemma. Given a variety V of residuated lattices, if VSI has the t_, �, 1u-bFEP in V, then
V has the t_, �, 1u-bFEP.

Corollary. The variety S has the t�,_, 1u-bFEP.

Lemma. If V is a variety of residuated lattices that has the t_, �, 1u-bFEP and
SI-opremums, then V�

SI (� VSI plus the trivial algebra) has the t_, �, 1u-bFEP.

To establish the t_, �, 1u-bFEP for S�n , we need more theory.
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Flow diagrams

Let a be a positive and b a negative element of an idempotent residuated chain A.

a L b means that ta, bu forms a left-zero semigroup: ab � a and ba � b.
a R b means that ta, bu forms a right-zero semigroup: ab � b and ba � a.

Theorem. [G.-Fussner APAL 2025] Let A be an idempotent residuated chain.

If a is a positive non-central element of A,
then exactly one of the following situations
happen.

1. a``   a`r � a L a` ¡ ar.

2. arr   ar` � a R ar ¡ a`.

If b is a negative non-central element of A,
then exactly one of the following situations
happen.

1. b`   br L b � br` ¡ brr.

2. br   b` R b � b`r ¡ b``.

b`

br � a L b � a`

ar

br

b` � a R b � ar

a`

a a`

a ar

a ba   b

central

any

non-central
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FEP for S�n

Lemma. An algebra of S is negatively n-cyclic iff it satisfies sn�1pxq ^ 1 � snpxq ^ 1.

Lemma. If pS, tAs : s P Suq is a decomposition system, then the resulting conic
idempotent residuated lattice A is (negatively) n-cyclic if and only if S is.

Lemma. Let S be an idempotent residuated chain, x P S and n P N.

1. x is central iff spxq � x. If x is noncentral, then spxq   x.

2. snpxq is central iff there exists a central element y P S such that py, xs has size at
most n and consists entirely of noncentral elements; in this case y � snpxq.

Theorem. The varieties Sn and S�n have the t_, �, 1u-bFEP.

Idea. We modify the construction of the algebra B by augmenting to the set Xγ,σ with

txÓ | x P γrXs Y σrXs and x is n-cyclic in Aiu.

For an element x in an idempotent residuated chain, we define

mx :� mintk P N : skpxq is centralu

when this minimum exists; in such a case we define xÓ :� smxpxq.

Corollary. The varieties Sn and S�n admit canonical formulas.
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Corollary. The varieties Sn and S�n admit canonical formulas.
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Weakly commutative and potent

We generalize the result of [Bezhanishvili-G.-Spada 2017] for residuated lattices that are
commutative (xy � yx), integral (x ¤ 1q, and n-potent (xn�1 � xn).

We remove integrality, we relax n-potency to pn,mq-potency (xm � xn) and we relax
commutativity to weak commutativity such as xyx � xxy and xyx � yxx.

Given a positive integer s and a non-constant partition a � pa0, a1, . . . , asq P Ns�1 of
s� 1 (i.e., not all ai’s are equal to 1 and a0 � a1 � . . .� as � s� 1), we define

paq xy1xy2 � � � ysx � xa0y1x
a1y2 � � � ysx

as .

For example, p2, 0q is the equation xyx � x2y and p0, 2, 1q is xyxzx � yx2zx.

Congruences on a residuated lattice A are bijective to congruence filters (aka deductive
filters) F . F is a filter and a submonoid and closed under conjugation: if x P F and
a P A, then azxa^ 1, ax{a^ 1 P F . (Conjugation can be iterated.)

The congruence filter associated to a congruence θ is Fθ � Òr1sθ.The congruence
associated to a filter F is given by: x θF y iff xzy, yzx P F .

The congruence filter generated by a subset X of A, denoted by F pXq, is the upward
closure of all products of iterated conjugates of elements of X.
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τ -deduction

A variety is called s-subcommutative if it satisfies px^ 1qsy � ypx^ 1qs; it is called
subcommutative if it is s-subcommutative for some s P Z�.

A weak commutativity equation is called initial if it is of the form

xy1x � � �xysx � xa0y1 � � �x
as�1ys

for some s P Z�; i.e., the last coordinate as of the vector ~a is zero. Likewise, a final
weak commutativity equation is one of the form (the first coordinate a0 of a is zero)

xy1x � � �xysx � y1 � � �x
as�1ysx

as

Lemma. The conjunction of an initial and of a final weak commutativity equations
(could be the same equation) implies subcommutativity. For example xyx � xxy and
xyx � yxx; or xyxyzx � yx3z by itself.

Note that pn,mq-potency (xn � xm) implies negative k-potency
(px^ 1qk�1 � px^ 1qk), for k � mintn,mu.

Lemma. If A is a subcommutative, negatively k-potent residuated lattice and
X Y tx0u � A, then x0 P F pXq iff there exists r P N and x1, . . . , xr P X with
px1 ^ � � � ^ xr ^ 1qk ¤ x0.

Lemma. Every subcommutative negatively k-potent variety of residuated lattices has the
τ -deduction theorem, for τpϕq � pϕ^ 1qk.
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SI-opremum

Lemma. If a and b are negative elements of a subcommutative residuated lattice, then:
a P F pbq iff there exists nb P N with bnb ¤ a.

Lemma. Let A be a negatively potent subcommutative residuated lattice. Then, A is
subdirectly irreducible iff A has an opremum.

Proof. For a, b P A with a, b   1 we show that a_ b   1. We have ana ¤ z and
bnb ¤ z. For t :� na � nb, we have t ¥ na, nb, so at ¤ ana and bt ¤ bnb . Since
multiplication distributes over joins,

pa_ bq2t �
ª
tci1 � . . . � ci2t | i1, . . . , i2t P N,ci1 , . . . , ci2t P ta, buu

Each ci1 � . . . � ci2t contains at least t-many a’s or t-many b’s, so by monotonicity and
integrality,

ci1 � . . . � ci2t ¤ at or ci1 � . . . � ci2t ¤ bt,

thus pa_ bq2t ¤ at _ bt ¤ ana _ bnb ¤ z   1. Therefore, a_ b   1: 1 is join irreducible.

If D is a chain of strictly negative elements, then for Φ � Dn (choice functions):

�ª
D
	k
�
ª
tϕp1q � . . . � ϕpkq | ϕ P Φu �

ª
tpϕp1q _ � � � _ ϕpkqqk | ϕ P Φu ¤ z
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subdirectly irreducible iff A has an opremum.

Proof. For a, b P A with a, b   1 we show that a_ b   1. We have ana ¤ z and
bnb ¤ z. For t :� na � nb, we have t ¥ na, nb, so at ¤ ana and bt ¤ bnb . Since
multiplication distributes over joins,

pa_ bq2t �
ª
tci1 � . . . � ci2t | i1, . . . , i2t P N,ci1 , . . . , ci2t P ta, buu

Each ci1 � . . . � ci2t contains at least t-many a’s or t-many b’s, so by monotonicity and
integrality,

ci1 � . . . � ci2t ¤ at or ci1 � . . . � ci2t ¤ bt,

thus pa_ bq2t ¤ at _ bt ¤ ana _ bnb ¤ z   1. Therefore, a_ b   1: 1 is join irreducible.

If D is a chain of strictly negative elements, then for Φ � Dn (choice functions):

�ª
D
	k
�
ª
tϕp1q � . . . � ϕpkq | ϕ P Φu �

ª
tpϕp1q _ � � � _ ϕpkqqk | ϕ P Φu ¤ z
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FEP

We set wi,j :� xyi � � � yj�1x. For example, the equation paq can be written as:

w1,s�1 � xa0y1x
a1y2 � � � ysx

as .

Kpaq denotes the variety of monoids axiomatized by paq.

For p, q, ` P N with p� q   `,
Kpp, q, `q denotes the variety of monoids axiomatized by the system of equations

w1ww2 � w1w
1w2

where delxpwq � delxpw
1q � ypyp�1 � � � y`�q, |w|x � |w

1|x � `� p� q, w1 � w1,p and
w2 � w`�q�1,`.

Theorem. [G.-Cardona IJAC 2015] Kpaq is a subvariety of Kppa, qa, 2sq for all paq,
where pa :� maxtj | @i   j, ai � 1u and qa :� maxtj | @i ¡ s� j, ai � 1u.

Theorem. The subvariety of Kpp, q, `q, where p� q   `, axiomatized by xn � xm for
n � m, is locally finite.

Theorem. Any variety axiomatized by pn,mq-potency, a weak commutativity equation,
and a (possibly empty) set of t_, �, 1u-equations has the t_, �, 1u-bFEP.

Corollary. Any variety axiomatized by pn,mq-potency, an initial and a final weak
commutativity equation, and any set of t_, �, 1u-equations has canonical formulas.
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