
Representability and formalization of
(distributive quasi) relation algebras

Peter Jipsen

Chapman University

Cracow Logic Conference, CLoCk 2025

June 26 – 27, Cracow, Poland

Peter Jipsen Representability and formalization of DqRAs 1

Outline

1 Relation algebras (RAs)

2 Representable relation algebras (RRAs)

3 Proving (non)representability

4 Implementing Comer’s 1-point extension method

5 Weakening relation algebras (with N. Galatos, J. Semrl)

6 Residuated lattices and (distributive) InFL-algebras

7 Distributive quasi Relation Algebras (with A. Craig, C. Robinson)

8 Minimal relation algebras and DqRAs

9 Theorem provers

10 Formalizing relation algebras in Lean (with P. Nelson)

11 An unrelated new result (with S. Santschi)

Peter Jipsen Representability and formalization of DqRAs 2

Definition of relation algebra

Alfred Tarski defined (abstract) relation algebras (RAs) in 1941.

A relation algebra A = ⟨A,⊔,c , ; , 1
,
, −1⟩ is a

Boolean algebra ⟨A,⊔,c ⟩ with operations ; , 1
,
, −1 that satisfy

associativity: ∀xyz , (x ; y) ; z = x ; (y ; z)

right distributivity: ∀xyz , (x ⊔ y) ; z = x ; z ⊔ y ; z

right identity: ∀x , x ; 1
,
= x

involution 1: ∀x , x−1−1 = x

involution 2: ∀xy , (x ; y)−1 = y−1 ; x−1

converse distributivity: ∀xy , (x ⊔ y)−1 = x−1 ⊔ y−1

Schröder inequality: ∀xy , x−1 ; (x ; y)c ⊔ y c = y c

Peter Jipsen Representability and formalization of DqRAs 3

Shorter definition of relation algebras

The definition by universal equational axioms shows that

the class RA of relation algebras is a variety, i.e., closed under
HSP

The following shorter definition is equivalent (using ⊥ = (1
,c ⊔ 1

,
)c):

A relation algebra A = ⟨A,⊔,c , ; , 1
,
, −1⟩ is a monoid ⟨A, ; , 1

,
⟩

and a Boolean algebra ⟨A,⊔,c ⟩ with operation −1 that satisfies

x ;y ⊓ z = ⊥ ⇔ z ;y−1 ⊓ x = ⊥ ⇔ x−1;z ⊓ y = ⊥

z

x y ⇔
x

z y ⇔
y

x z

Note ; has priority over the meet operation x ⊓ y = (xc ⊔ y c)c

Peter Jipsen Representability and formalization of DqRAs 4

Representable relation algebras RRA

The full algebra of binary relations on a set X is

Rel(X) = ⟨P(X 2),∪,c , ; , idX ,−1 ⟩ where Rc = X 2 \ R

composition R ;S = {(x , y) | ∃z , (x , z) ∈ R and (z , y) ∈ S}

converse R−1 = {(x , y) | (y , x) ∈ R}

Proposition: Rel(X) is a relation algebra

RRA = representable relation algebras = SP{Rel(X) | X is a set}

Tarski [1956] proved that RRA is a variety (i.e., closed under H)

For more details see the books by Givant [2017] and Maddux [2006]

Peter Jipsen Representability and formalization of DqRAs 5

Representability by a group

For a group G = ⟨G , ·, 1,−1 ⟩ we define the group relation algebra

Cm(G) = ⟨P(G),∪,c , ·, {1},−1 ⟩

where X · Y = {xy | x ∈ X , y ∈ Y } and X−1 = {x−1 | x ∈ X}

Cm(G) is representable by Cayley’s theorem: for g ∈ G ,

each atom {g} is represented by Rg = {(x , gx) | x ∈ G}

Peter Jipsen Representability and formalization of DqRAs 6

Representability

When is a RA representable as an algebra of binary relations?

Donald Monk (1964): the variety of representable RAs is not
axiomatized by finitely many formulas.

Robin Hirsch and Ian Hodkinson (2001): it is undecidable
whether a finite relation algebra is representable.

Roger Maddux (1983): n-dimensional bases to prove
nonrepresentability.

Steve Comer (∼1980): one-point extension method to prove
representability for some small RAs.

Finding and checking these proofs by hand is laborious.

Peter Jipsen Representability and formalization of DqRAs 7

Implementing Comer’s one-point extension method

def ExtensionsList(A):

ext[i] is the list of atoms k,con[j] such that i <= j;k

n = len(A)

con = Converses(A)

ext = [set([]) for i in range(n)]

for j in range(1,n):

for k in range(1,n):

for i in A[j][k]:

ext[i] |= set([(k, con[j])])

return [list(x) for x in ext]

def FindOnePointExtension(A):

"""

Returns rules for a one-point extension if possible,

returns false otherwise.

Uses a backtrack algorithm to search the space

"""

Peter Jipsen Representability and formalization of DqRAs 8

Atomic networks

A consistent atomic network N : X 2 → At(A) is a function s.t.

N(x , x) ≤ 1
,
, N(x , z) ≤ N(x , y);N(y , z) and N(x , y) = N(y , x)−1.

It is a representation if N is onto and for all atoms a, b,
N(x , y) ≤ a; b =⇒ ∃z s.t. N(x , z) = a and N(z , y) = b.

The representation homomorphism h : At(A)→ P(X 2)
is given by h(a) = N−1[{a}].

Then c ≤ a; b implies h(c) ⊆ h(a; b) and h(a−1) = (h(a))−1.

The existence of a representation is equivalent to a winning
strategy for the existential player in the representation game.

Peter Jipsen Representability and formalization of DqRAs 9

Extending atomic networks step-by-step

Given a consistent network, we want to extend it to a
representation in a step-by-step way:

For all a, b ∈ At(A), and x , y ∈ X such that N(x , y) ≤ a; b,

if there does not exists z ∈ X such that N(x , z) = a and
N(z , y) = b then choose z not in X , let X ′ = X ∪ {z} and define
N ′(x , z) = a and N ′(z , y) = b.

Need to define N ′(u, z) for all u ∈ X \ {x , y} s.t. N ′ is still
consistent.

So we need to ensure N ′(u, z) ≤ N ′(u, v);N ′(v , z).

E.g. N ′(u, z) = “flexible atom” is a valid one-point extension.

If a solution exists, this algorithm finds one.

Representation does not have to be infinite

Peter Jipsen Representability and formalization of DqRAs 10

Implementing Comer’s one-point extension method

def NextColor(A,i):

choose the next color for extension i and recurse

return false if no choice worked.

if i >= len(exta): return True # found the last color

if i == ei: # skip the extension I’m working on

return NextColor(A,i+1)

for c in colset[i]: # try each color

col[i] = c; j = 0

ok = True

while ok and j <= i:

if j != ei: # skip the extension I’m working on

x = set(A[exta[j][0]][con[exta[i][0]]])

x &= A[exta[j][1]][con[exta[i][1]]]

ok = (x <= A[con[col[j]]][c]) #check subset

j += 1

if ok and NextColor(A,i+1): return True

return False

Peter Jipsen Representability and formalization of DqRAs 11

Implementing Comer’s one-point extension method

def ColorSets(A,ex,i):

return sets of permissible colors between ex[i] and ex[k] for each k.

cs = [[] for x in ex]

for k in range(len(ex)):

if k != i: # skip the extension I’m working on

x = set(A[ex[i][0]][con[ex[k][0]]])

x &= A[ex[i][1]][con[ex[k][1]]]

cs[k] = list(x)

return cs

con = Converses(A)

ext = ExtensionsList(A)

collist = []

for atm in range(1,len(A)):

exta = ext[atm]

for ei in range(len(exta)):

colset = ColorSets(A,exta,ei)

col = [0 for x in exta]

if not NextColor(A,0):

return False

collist.append(col)

return collist

Peter Jipsen Representability and formalization of DqRAs 12

A database of finite integral relation algebras up to 5 atoms

Let a, b, c , d be symmetric atoms (x−1 = x) and r , s nonsymmetric

The number of RAs up to isomorphism is given below:

2 4 8 8 16 16 32 32 32

1
,

1
,
a 1

,
rr−1 1

,
ab 1

,
arr−1 1

,
abc 1

,
rr−1ss−1 1

,
abrr−1 1

,
abcd

1 2 3 7 37 65 83 1316 3013

Their (non)representability is known up to size 16 (= 4 atoms).

For the list of 83 there are 15 RAs that are not known to be
(non)representable: 30,31,32,40,44,45,54,56,59,60,61,63,65,69,79
(see [Maddux 2006])

Unknown if representable: 235 out of 1316; 485 out of 3013

Peter Jipsen Representability and formalization of DqRAs 13

Representable weakening relation algebras RwkRA

The set of weakening relations on a poset (X ,≤) is

Wk(X ,≤) = {R ⊆ X 2 | ≤;R;≤ = R}.

The full algebra of weakening relations on a poset (X ,≤) is

wk(X ,≤) = (Wk(X ,≤),∩,∪, ∅,⊤, ; ,≤,∼) where ∼R = X 2 \ R−1

The class of representable weakening relation algebras is

RwkRA = SP{wk(X ,≤) | (X ,≤) is a poset}.

It is a quasivariety (defined by implications) but not a variety.

Peter Jipsen Representability and formalization of DqRAs 14

Examples of small weakening RAs

The point algebra is a relation algebra with 3 atoms idQ, <,>
where < is the strict order on the rational numbers Q.

It has two weakening subalgebras: S4 = {∅, <,≤,⊤} and
A = {∅, idQ, <,≤, <∪>,⊤}.
Like the point algebra, both can only be represented on infinite sets.

Note that A is diagonally representable, while S4 is not.

idQ >

≥

∅

<

<∪>≤

⊤ = Q2

∅

<

≤ = ∼<

⊤ = Q2

idQ

∅

< = ∼≤

<∪> = ∼idQ≤

⊤ = Q2

The point algebra S4 A

Peter Jipsen Representability and formalization of DqRAs 15

Residuated lattices

A residuated lattice (RL) is of the form A = (A,⊓,⊔, ·, 1, \, /)
where (A,⊓,⊔) is a lattice, (A, ·, 1) is a monoid and \, / are the
left and right residuals of ·, i.e., for all x , y , z ∈ A

xy ≤ z ⇐⇒ y ≤ x\z ⇐⇒ x ≤ z/y .

The previous formula is equivalent to the following 4 identities:

x ≤ y\(yx ⊔ z) x((x\y) ⊓ z) ≤ y
x ≤ (xy ⊔ z)/y ((x/y) ⊓ z)y ≤ x

so residuated lattices form a variety.

A full Lambek (FL-)algebra is a RL with a constant 0,

used to define the linear negations ∼x = x\0 and −x = 0/x .

An involutive FL-algebra (InFL) is an FL-algebra such that
∼−x = x = −∼x . It is cyclic if ∼x = −x

Peter Jipsen Representability and formalization of DqRAs 16

RwkRAs are cyclic distributive involutive FL-algebras

Recall that relation algebras satisfy

x ;y ⊓ z = ⊥ ⇔ z ;y−1 ⊓ x = ⊥ ⇔ x−1;z ⊓ y = ⊥

x ; y ≤ zc ⇔ x ≤ (z ; y−1)c ⇔ y ≤ (x−1; z)c

x ; y ≤ z ⇔ x ≤ (y ; z−1c)−1c ⇔ y ≤ (z−1c ; x)−1c

replacing z by zc , (x ; y)−1 = y−1; x−1 and x−1−1 = x .

So letting ∼z = z−1c , we have A ∈ RA implies

(A,⊔, ; , 1,∼) is a cyclic InFL-algebra

and it satisfies distributivity: x ⊓ (y ⊔ z) = (x ⊓ y) ⊔ (x ⊓ z)

Peter Jipsen Representability and formalization of DqRAs 17

Distributive quasi relation algebras

To obtain nonclassical relation algebras that have the same
signature as RA, we add a unary De Morgan operation ′ that
satisfies (x ⊔ y)′ = x ′ ⊓ y ′.

[Galatos, J. 2013] A quasi relation algebra is an InFL-algebra
with a De Morgan operation such that (x ; y)′ = x ′ + y ′ where
x + y = −(∼y ;∼x).
Distributive quasi relation algebras (DqRAs) are a finitely based
variety of nonclassical RAs.

Similar to the list of 1662 residuated lattices with up to 6 elements
https://math.chapman.edu/~jipsen/preprints/RLlist3.pdf

[Galatos, J. 2017]

we recently made a list of 395 DqRAs with up to 8 elements
https://github.com/jipsen/

Distributive-quasi-relation-algebras-and-DInFL/blob/

main/DInFL1.pdf [Craig, J., Robinson 2025]

Peter Jipsen Representability and formalization of DqRAs 18

https://math.chapman.edu/~jipsen/preprints/RLlist3.pdf
https://github.com/jipsen/Distributive-quasi-relation-algebras-and-DInFL/blob/main/DInFL1.pdf
https://github.com/jipsen/Distributive-quasi-relation-algebras-and-DInFL/blob/main/DInFL1.pdf
https://github.com/jipsen/Distributive-quasi-relation-algebras-and-DInFL/blob/main/DInFL1.pdf

Peter Jipsen Representability and formalization of DqRAs 19

Minimal relation algebras

A1 = BA, A2 = Cm(Z2), A3 < Cm(Z3), N11 = Rel(2)

Peter Jipsen Representability and formalization of DqRAs 20

New minimal varieties from subreducts

A relation algebra A has a ∼-reduct Ã where c ,−1 are removed and
∼ is added.

A subalgebra of a ∼-reduct is distributive, but not necessarily
Boolean, and is called a ∼-subreduct.

If A ∈ RRA then every ∼-subreduct of A is in RwkRA and satisfies
1
,
⊓ ∼1

,
= ⊥, which means 1

,
is the identity relation.

The other nonsymmetric minimal RAs also have proper
∼-subreducts.

These algebras are called diagonal RwkRAs, and they are
discriminator algebras [J., Semrl 2023].

C1 = ⟨{1, 2,−3}⟩Cm(Z7) has 8 elements but R = {1, 2,−3}
generates a minimal variety of RwkRA with 6 elements.

Peter Jipsen Representability and formalization of DqRAs 21

Brief background on proof assistants

Automated theorem provers have been developed since the 1960s,
see McCune and Wos [1997] for a brief history.

Mostly restricted to first-order logic: Otter, Prover9/Mace4,
SPASS, E-prover, Vampire, ...

Satisfiability Modulo Theories (SMT) solvers: Z3, CVC5, ...

Interactive theorem provers: Mizar, PVS, HOL, HOL-light,
Isabelle, Rocq, Agda, Lean, ...

Based on higher-order logics, (dependent) type theories

Large libraries of formal proofs, but no common language

Peter Jipsen Representability and formalization of DqRAs 22

A Lean class for relation algebras

class RelationAlgebra (A : Type u) extends

BooleanAlgebra A, Comp A, One A, Inv A where

assoc : ∀ x y z : A, (x ; y) ; z = x ; (y ; z)

rdist : ∀ x y z : A, (x ⊔ y) ; z = x ; z ⊔ y ; z

comp_one : ∀ x : A, x ; 1 = x

conv_conv : ∀ x : A, x−1−1 = x

conv_dist : ∀ x y : A, (x ⊔ y)−1 = x−1 ⊔ y−1

conv_comp : ∀ x y : A, (x ; y)−1 = y−1 ; x−1

schroeder : ∀ x y : A, x−1 ; (x ; y)c ≤ yc

This definition is based on Lean’s mathlib4

Peter Jipsen Representability and formalization of DqRAs 23

Relation algebra in proof assistants

Rocq: Damien Pous, Relation Algebra and KAT in Coq, 2012,
https://perso.ens-lyon.fr/damien.pous/ra/

Isabelle: A. Armstrong, S. Foster, G. Struth, T. Weber, 2014,
Archive of Formal Proofs, Relation Algebra
https://www.isa-afp.org/entries/Relation_Algebra.html

Peter Jipsen Representability and formalization of DqRAs 24

https://perso.ens-lyon.fr/damien.pous/ra/
https://www.isa-afp.org/entries/Relation_Algebra.html

lemma top_conv : (⊤ : A)−1 = ⊤ := by

have : (⊤ : A)−1 = (⊤ ⊔ ⊤−1)−1 := by simp

have : (⊤ : A)−1 = ⊤−1 ⊔ ⊤ := by rw [conv_dist,

conv_conv] at this; exact this

have : (⊤ : A) ≤ ⊤−1 := by rw [left_eq_sup] at this;

exact this

exact top_unique this

lemma ldist (x y z : A) : x ; (y ⊔ z) = x ; y ⊔ x ; z :=

by

calc

x ; (y ⊔ z) = (x ; (y ⊔ z))−1−1 := by rw [conv_conv]

_ = ((y ⊔ z)−1 ; x−1)−1 := by rw [conv_comp]

_ = ((y−1 ⊔ z−1) ; x−1)−1 := by rw [conv_dist]

_ = (y−1 ; x−1 ⊔ z−1 ; x−1)−1 := by rw [rdist]

_ = ((x ; y)−1 ⊔ (x ; z)−1)−1 := by rw [←conv_comp,

←conv_comp]

_ = (x ; y) ⊔ (x ; z) := by rw [←conv_dist,

conv_conv]

Peter Jipsen Representability and formalization of DqRAs 25

lemma comp_le_comp_right (z : A) {x y : A} (h : x ≤ y) :

x ; z ≤ y ; z := by

calc

x ; z ≤ x ; z ⊔ y ; z := by simp

_ = (x ⊔ y) ; z := by rw [←rdist]

_ = y ; z := by simp [h]

lemma comp_le_comp_left (z : A) {x y : A} (h : x ≤ y) : z

; x ≤ z ; y := by

calc

z ; x ≤ z ; x ⊔ z ; y := by simp

_ = z ; (x ⊔ y) := by rw [←ldist]

_ = z ; y := by simp [h]

lemma conv_le_conv {x y : A} (h : x ≤ y) : x−1 ≤ y−1 :=

by

calc

x−1 ≤ x−1 ⊔ y−1 := by simp

_ = (x ⊔ y)−1 := by rw [←conv_dist]

_ = y−1 := by simp [h]

Peter Jipsen Representability and formalization of DqRAs 26

lemma conv_compl_le_compl_conv (x : A) : x−1c ≤ xc−1 := by

have : x ⊔ xc = ⊤ := by simp

have : (x ⊔ xc)−1 = ⊤−1 := by simp

have : x−1 ⊔ xc−1 = ⊤ := by rw [conv_dist, top_conv]

at this; exact this

rw[join_eq_top_iff_compl_le] at this; exact this

lemma conv_compl_eq_compl_conv (x : A) : xc−1 = x−1c := by

have : x−1−1c ≤ x−1c−1 := conv_compl_le_compl_conv x−1

have : xc ≤ x−1c−1 := by rw [conv_conv] at this; exact

this

have : xc−1 ≤ x−1c−1−1 := conv_le_conv this

rw [conv_conv] at this; exact le_antisymm this

(conv_compl_le_compl_conv x)

Peter Jipsen Representability and formalization of DqRAs 27

lemma one_conv_eq_one : (1 : A)−1 = 1 := by

calc

(1 : A)−1 = 1−1 ; 1 := by rw [comp_one]

_ = (1−1 ; 1)−1−1 := by rw [conv_conv]

_ = (1−1 ; 1−1−1)−1 := by rw [conv_comp]

_ = (1−1 ; 1)−1 := by rw [conv_conv]

_ = 1 := by rw [comp_one, conv_conv]

lemma one_comp (x : A) : 1 ; x = x := by

calc

1 ; x = (1 ; x)−1−1 := by rw [conv_conv]

_ = (x−1 ; 1−1)−1 := by rw [conv_comp]

_ = (x−1 ; 1)−1 := by rw [one_conv_eq_one]

_ = x−1−1 := by rw [comp_one]

_ = x := by rw [conv_conv]

Peter Jipsen Representability and formalization of DqRAs 28

lemma peirce_law1 (x y z : A) :

x ; y ⊓ z = ⊥ ↔ x−1 ; z ⊓ y = ⊥ := by

constructor

· intro h

have : x ; y ≤ zc := by rw [meet_eq_bot_iff_le_compl]

at h; exact h

have : z ≤ (x ; y)c := by rw [←compl_le_compl_iff_le,

compl_compl] at this; exact this

have : x−1 ; z ≤ x−1 ; (x ; y)c := comp_le_comp_left

x−1 this

have : x−1 ; z ⊓ y ≤ ⊥ := by calc

x−1 ; z ⊓ y ≤ x−1 ; (x ; y)c ⊓ y :=

inf_le_inf_right y this

_ ≤ yc ⊓ y := inf_le_inf_right y (schroeder x y)

_ = ⊥ := by simp

exact bot_unique this

Peter Jipsen Representability and formalization of DqRAs 29

· intro h

have : x−1 ; z ≤ yc := by rw

[meet_eq_bot_iff_le_compl] at h; exact h

have : y ≤ (x−1 ; z)c := by

rw [←compl_le_compl_iff_le, compl_compl] at this;

exact this

have : x−1−1 ; y ≤ x−1−1 ; (x−1 ; z)c :=

comp_le_comp_left x−1−1 this

have : x−1−1 ; y ⊓ z ≤ ⊥ := by calc

x−1−1 ; y ⊓ z ≤ x−1−1 ; (x−1 ; z)c ⊓ z :=

inf_le_inf_right z this

_ ≤ zc ⊓ z := inf_le_inf_right z (schroeder x−1 z)

_ = ⊥ := by simp

have : x ; y ⊓ z ≤ ⊥ := by rw [conv_conv] at this;

exact this

exact bot_unique this

lemma peirce_law2 (x y z : A) :

x ; y ⊓ z = ⊥ ↔ z ; y−1 ⊓ x = ⊥ := by

. . .

Peter Jipsen Representability and formalization of DqRAs 30

Definitions for binary relations: Math vs. Lean

Let X be a set and R, S ,T ∈ P(X × X) binary relations on X

import Mathlib.Data.Set.Basic

variable {X : Type u} (R S T : Set (X × X))

Define composition R ;S = {(x , y) | ∃z , (x , z) ∈ R ∧ (z , y) ∈ S}.

def composition (R S : Set (X × X)) : Set (X × X) :=

{ (x, y) | ∃ z, (x, z) ∈ R ∧ (z, y) ∈ S }

Define the inverse of R by R−1 = {(y , x) | (x , y) ∈ R}

infixl:90 " ; " => composition

postfix:100 "−1" => inverse

Peter Jipsen Representability and formalization of DqRAs 31

theorem comp_assoc : (R ; S) ; T = R ; (S ; T) := by

rw [Set.ext_iff]

intro (a,b)

constructor

intro h

rcases h with ⟨z, h1, _⟩
rcases h1 with ⟨x,_,_⟩
use x

constructor

trivial

use z

intro h2
rcases h2 with ⟨x, h3, h4⟩
rcases h4 with ⟨y,_,_⟩
use y

constructor

use x

trivial

Peter Jipsen Representability and formalization of DqRAs 32

Algebras of binary relations

An algebra of binary relations is a set of relations closed under
the operations ∪,∩,c , ; ,−1 , 1

,
.

Can prove the axioms of RAs hold for algebras of binary relations.

A relation algebra is representable if it is isomorphic to an algebra
of binary relations.

Roger Lyndon [1956] found axioms that hold in all algebras of
relations but not in all relation algebras.

Peter Jipsen Representability and formalization of DqRAs 33

Shortest axioms of Roger Lyndon

J: t ≤ u; v ⊓ w ; x and u−1;w ⊓ v ; x−1 ≤ y ; z
=⇒ t ≤ (u; y ⊓ w ; z−1); (y−1; v ⊓ x ; z)

L: x ; y ⊓ z ;w ⊓ u; v ≤
x ; (x−1; u ⊓ y ; v−1 ⊓ (x−1; z ⊓ y ;w−1); (z−1; u ⊓ w ; v−1)); v

M: t ⊓ (u ⊓ v ;w); (x ⊓ y ; z) ≤
v ; ((v−1; t ⊓ w ; x); z−1 ⊓ w ; y ⊓ v−1; (u; y ⊓ t; z−1)); z

Peter Jipsen Representability and formalization of DqRAs 34

theorem Jtrue : t ⊆ u;v ∩ w;x ∧ u−1;w ∩ v;x−1 ⊆ y;z

→ t ⊆ (u;y ∩ w;z−1);(y−1;v ∩ z;x) := by

intro h

intro (a,b)

intro h1
rcases h with ⟨h2,h3⟩
have h4 : (a, b) ∈ u ; v ∩ w ; x :=

Set.mem_of_mem_of_subset h1 h2
rcases h4 with ⟨h5, h6⟩
rcases h5 with ⟨c, h7, h8⟩
rcases h6 with ⟨d, h9, H1⟩
have H2 : (c, a) ∈ u−1 := by rw [inv]; dsimp; trivial

have H3 : (c, d) ∈ u−1 ; w := by use a

have H4 : (b, d) ∈ x−1 := by rw [inv]; dsimp; trivial

have H5 : (c, d) ∈ v ; x−1 := by use b

have H6 : (c, d) ∈ u−1 ; w ∩ v ; x−1 := by constructor;

trivial; trivial

have H7 : (c, d) ∈ y ; z := Set.mem_of_mem_of_subset H6
h3

rcases H7 with ⟨e, H8, H9⟩
. . .

Peter Jipsen Representability and formalization of DqRAs 35

theorem Ltrue :

x;y ∩ z;w ∩ u;v ⊆ x;((x−1;z ∩ y;w−1);(z−1;u ∩ w;v−1) ∩
x−1;u ∩ y;v−1);v := by

intro (a,b)

intro h

rcases h with ⟨h1, h2⟩
rcases h1 with ⟨h3,h4⟩
rcases h3 with ⟨e, h3, h5⟩
rcases h4 with ⟨d, h3, h4⟩
rcases h2 with ⟨c, h6, h7⟩
use c

constructor

use e

constructor

trivial

constructor

constructor

use d

constructor

constructor

. . .
use a

constructor

rw [inv]

dsimp

trivial

trivial

use b

constructor

trivial

rw [inv]

dsimp

trivial

constructor

use a

constructor

rw [inv]

dsimp

trivial

trivial

use b

constructor

trivial

rw [inv]

dsimp

trivial

use a

constructor

rw [inv]

dsimp

trivial

trivial

use b

constructor

trivial

rw [inv]

dsimp

trivial

trivial

. . .

Peter Jipsen Representability and formalization of DqRAs 36

theorem Mtrue :

t ∩ (u ∩ v ; w) ; (x ∩ y;z) ⊆ v;((v−1;t ∩ w;x);z−1 ∩
w;y ∩ v−1;(u;y ∩ t;z−1));z := by

intro (a,b)

intro h

rcases h with ⟨h1,h2⟩
rcases h2 with ⟨c,h1,h2⟩
rcases h1 with ⟨h3,h4⟩
rcases h4 with ⟨d,h5,h6⟩
rcases h2 with ⟨h7,h8⟩
rcases h8 with ⟨e,h9,h10⟩
use e

constructor

use d

constructor

trivial

constructor

constructor

use b

constructor

. . .
constructor

use a

constructor

rw [inv]

dsimp

trivial

trivial

use c

rw [inv]

dsimp

trivial

use c

use a

constructor

rw [inv]

dsimp

trivial

constructor

use c

use b

constructor

trivial

rw [inv]

dsimp

trivial

trivial

. . .

Peter Jipsen Representability and formalization of DqRAs 37

Ralph McKenzie’s 16-element relation algebra

This algebra is named 1437 in Roger Maddux’s book [5]

It is a nonrepresentable RA of smallest cardinality

with four atoms: 1
,
, a, r , r−1 and top element ⊤ = 1

,
⊔ a ⊔ r ⊔ r−1

; 1
,

a r r−1

1
,

a a r r−1

a a 1
,
⊔ r ⊔ r−1 a ⊔ r a ⊔ r−1

r r a ⊔ r r ⊤
r−1 r−1 a ⊔ r−1 ⊤ r−1

Peter Jipsen Representability and formalization of DqRAs 38

All 16 elements of McKenzie’s algebra

⊤

r−1ra1
,

⊥

Peter Jipsen Representability and formalization of DqRAs 39

McKenzie’s algebra in Lean (as an atom structure)

inductive M : Type | e : M | a : M | r : M | r1 : M

open M

def M.ternary : M → M → M → Prop := fun

| e, e, e => True | e, a, a => True | e, r, r => True

| e, r1, r1 => True | a, e, a => True | a, a, e => True

| a, a, r => True | a, a, r1 => True | a, r, a => True

| a, r, r => True | a, r1, a => True | a, r1, r1 => True

| r, e, r => True | r, a, a => True | r, a, r => True

| r, r, r => True | r, r1, e => True | r, r1, a => True

| r, r1, r => True | r, r1, r1 => True | r1, e, r1 => True

| r1, a, a => True | r1, a, r1 => True | r1, r, e => True

| r1, r, a => True | r1, r, r => True | r1, r, r1 => True

| r1, r1, r1 => True | _, _, _ => False

def M.inv : M → M := fun | e => e | a => a | r=>r1 | r1=>r

def M.unary : M → Prop := fun | e => True | _ => False

Peter Jipsen Representability and formalization of DqRAs 40

McKenzie’s algebra is nonrepresentable

Theorem [McKenzie 1966] McKenzie’s algebra 1437 is not
representable.

Proof. The formula M fails in this algebra:

Let t = a, u = r , v = a,w = a, x = r−1, y = a, z = a.

From the table we see u ⊓ v ;w = r ⊓ a; a = r ⊓ (1
,
⊔ r ⊔ r−1) = r

and x ⊓ y ; z = r−1 ⊓ a; a = r−1 ⊓ (1
,
⊔ r ⊔ r−1) = r−1.

Hence the LHS = a ⊓ r ; r−1 = a ⊓ (1
,
⊔ a ⊔ r ⊔ r−1) = a.

However the RHS = a; ((a; a ⊓ a; r−1); a ⊓ a; a ⊓ a; (r ; a ⊓ a; a)); a

= a; (r−1; a ⊓ a; a ⊓ a; r); a = a;⊥; a = ⊥ □

Peter Jipsen Representability and formalization of DqRAs 41

A 12-element subreduct of McKenzie’s algebra

⊤

r ⊔ r−1

ra1
,

⊥

Using the network game in [J., Semrl 2023] one can check that
this ∼-subreduct is not representable.

Peter Jipsen Representability and formalization of DqRAs 42

The amalgamation property

A class K of algebras has the amalgamation property

if for all A,B,C ∈ K and embeddings f : A→ B, g : A→ C

there exists D ∈ K and embeddings f ′ : B→ D, g ′ : C→ D such
that

A

B

C

f ′ ◦ f = g ′ ◦ g .

f

g

D

f ′

g ′

The pair ⟨f , g⟩ is called a span and ⟨D, f ′, g ′⟩ is an amalgam.

Peter Jipsen Representability and formalization of DqRAs 43

Amalgamation for residuated lattices?

Does AP hold for all residuated lattices? (open since < 2002)

Commutative residuated lattices satisfy x · y = y · x

Kowalski, Takamura [2004]: AP holds for commutative RLs

Many other results are know for various subvarieties, e.g.,

Heyting algebras are integral (x ≤ 1) idempotent (xx = x) RLs

Maksimova [1977]: Exactly 8 varieties of Heyting algebras have AP

Peter Jipsen Representability and formalization of DqRAs 44

J. and Santschi 2025: AP fails for residuated lattices

A

⊤

1

⊥

B

⊤ = ⊤b

a

b = b⊤
= ba

1

⊥

C

⊤

c = c⊤1

⊥ = c2

f

g

black = idempotent, round = central

Theorem: AP fails for RL Proof: Straightforward to check A,B,C

are RLs and f , g are embeddings.

Assume by contradiction ∃ amalgam D.

1 ∨ c = ⊤ and 1 ∨ b = 1 ∨ a = a < ⊤
hence g ′(c) ̸= f ′(a) and g ′(c) ̸= f ′(b).

So f ′, g ′ are inclusions and B,C ≤ D

Now, since c = c⊤ and ⊤b = ⊤,
in D we have cb = c⊤b = c⊤ = c .

Moreover ⊤ = 1 ∨ c and c2 = ⊥,
show c = ⊤c = ⊤bc = (1 ∨ c)bc

= bc ∨ cbc = bc ∨ c2 = bc ∨ ⊥ = bc

(using ⊥ ≤ c implies ⊥ = b⊥ ≤ bc).

But also b = b⊤ = b(1 ∨ c) = b ∨ bc

gives c = bc ≤ b ≤ a. Hence

⊤ = 1 ∨ c ≤ a ∨ c = a; contradiction!

Peter Jipsen Representability and formalization of DqRAs 45

Some remarks

The proof on the previous slide also shows that the AP already
fails for the variety of distributive residuated lattices,

as well as for the {\, /}-free subreducts of residuated lattices, i.e.,
for lattice-ordered monoids.

Also the proof does not depend on meet or on the constant 1
being in the signature, so the following varieties do not have AP:

• residuated lattice-ordered semigroups,

• lattice-ordered semigroups,

• residuated join-semilattice-ordered semigroups and

• join-semilattice-ordered semigroups.

Similar examples show that AP fails in idempotent RLs and in
involutive FL-algebras.

Peter Jipsen Representability and formalization of DqRAs 46

References

S. Givant, Relation Algebras, Vol 1, 572pp, Vol 2, 605pp, Springer 2017.

L∃∀N Programming Language and Theorem Prover,
https://lean-lang.org/

L∃∀N Community and MathLib,
https://leanprover-community.github.io/

R. Hirsch, I. Hodkinson: Relation Algebras by Games. North
Holland/Elsevier Vol 147 (2002)

R. Maddux, Relation Algebras. Elsevier Vol 150 (2006), 731pp.

R. McKenzie, Representations of integral relation algebras. Michigan
Math. J., 17, (1970), 279–287.

W. McCune, L. Wos, Otter, Journal of Automated Reasoning, 18, (1997),
211–220.

THANKS!

Peter Jipsen Representability and formalization of DqRAs 47

https://lean-lang.org/
https://leanprover-community.github.io/

