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Definition of relation algebra

Alfred Tarski defined (abstract) relation algebras (RAs) in 1941.

A relation algebra A = ⟨A,⊔,c , ; , 1
,
, −1⟩ is a

Boolean algebra ⟨A,⊔,c ⟩ with operations ; , 1
,
, −1 that satisfy

associativity: ∀xyz , (x ; y) ; z = x ; (y ; z)

right distributivity: ∀xyz , (x ⊔ y) ; z = x ; z ⊔ y ; z

right identity: ∀x , x ; 1
,
= x

involution 1: ∀x , x−1−1 = x

involution 2: ∀xy , (x ; y)−1 = y−1 ; x−1

converse distributivity: ∀xy , (x ⊔ y)−1 = x−1 ⊔ y−1

Schröder inequality: ∀xy , x−1 ; (x ; y)c ⊔ y c = y c
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Shorter definition of relation algebras

The definition by universal equational axioms shows that

the class RA of relation algebras is a variety, i.e., closed under
HSP

The following shorter definition is equivalent (using ⊥ = (1
,c ⊔ 1

,
)c):

A relation algebra A = ⟨A,⊔,c , ; , 1
,
, −1⟩ is a monoid ⟨A, ; , 1

,
⟩

and a Boolean algebra ⟨A,⊔,c ⟩ with operation −1 that satisfies

x ;y ⊓ z = ⊥ ⇔ z ;y−1 ⊓ x = ⊥ ⇔ x−1;z ⊓ y = ⊥

z

x y ⇔
x

z y ⇔
y

x z

Note ; has priority over the meet operation x ⊓ y = (xc ⊔ y c)c
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Representable relation algebras RRA

The full algebra of binary relations on a set X is

Rel(X ) = ⟨P(X 2),∪,c , ; , idX ,−1 ⟩ where Rc = X 2 \ R

composition R ;S = {(x , y) | ∃z , (x , z) ∈ R and (z , y) ∈ S}

converse R−1 = {(x , y) | (y , x) ∈ R}

Proposition: Rel(X ) is a relation algebra

RRA = representable relation algebras = SP{Rel(X ) | X is a set}

Tarski [1956] proved that RRA is a variety (i.e., closed under H)

For more details see the books by Givant [2017] and Maddux [2006]
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Representability by a group

For a group G = ⟨G , ·, 1,−1 ⟩ we define the group relation algebra

Cm(G) = ⟨P(G ),∪,c , ·, {1},−1 ⟩

where X · Y = {xy | x ∈ X , y ∈ Y } and X−1 = {x−1 | x ∈ X}

Cm(G) is representable by Cayley’s theorem: for g ∈ G ,

each atom {g} is represented by Rg = {(x , gx) | x ∈ G}

Peter Jipsen Representability and formalization of DqRAs 6



Representability

When is a RA representable as an algebra of binary relations?

Donald Monk (1964): the variety of representable RAs is not
axiomatized by finitely many formulas.

Robin Hirsch and Ian Hodkinson (2001): it is undecidable
whether a finite relation algebra is representable.

Roger Maddux (1983): n-dimensional bases to prove
nonrepresentability.

Steve Comer (∼1980): one-point extension method to prove
representability for some small RAs.

Finding and checking these proofs by hand is laborious.
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Implementing Comer’s one-point extension method

def ExtensionsList(A):

# ext[i] is the list of atoms k,con[j] such that i <= j;k

n = len(A)

con = Converses(A)

ext = [set([]) for i in range(n)]

for j in range(1,n):

for k in range(1,n):

for i in A[j][k]:

ext[i] |= set([(k, con[j])])

return [list(x) for x in ext]

def FindOnePointExtension(A):

"""

Returns rules for a one-point extension if possible,

returns false otherwise.

Uses a backtrack algorithm to search the space

"""
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Atomic networks

A consistent atomic network N : X 2 → At(A) is a function s.t.

N(x , x) ≤ 1
,
, N(x , z) ≤ N(x , y);N(y , z) and N(x , y) = N(y , x)−1.

It is a representation if N is onto and for all atoms a, b,
N(x , y) ≤ a; b =⇒ ∃z s.t. N(x , z) = a and N(z , y) = b.

The representation homomorphism h : At(A)→ P(X 2)
is given by h(a) = N−1[{a}].

Then c ≤ a; b implies h(c) ⊆ h(a; b) and h(a−1) = (h(a))−1.

The existence of a representation is equivalent to a winning
strategy for the existential player in the representation game.
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Extending atomic networks step-by-step

Given a consistent network, we want to extend it to a
representation in a step-by-step way:

For all a, b ∈ At(A), and x , y ∈ X such that N(x , y) ≤ a; b,

if there does not exists z ∈ X such that N(x , z) = a and
N(z , y) = b then choose z not in X , let X ′ = X ∪ {z} and define
N ′(x , z) = a and N ′(z , y) = b.

Need to define N ′(u, z) for all u ∈ X \ {x , y} s.t. N ′ is still
consistent.

So we need to ensure N ′(u, z) ≤ N ′(u, v);N ′(v , z).

E.g. N ′(u, z) = “flexible atom” is a valid one-point extension.

If a solution exists, this algorithm finds one.

Representation does not have to be infinite
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Implementing Comer’s one-point extension method

def NextColor(A,i):

# choose the next color for extension i and recurse

# return false if no choice worked.

if i >= len(exta): return True # found the last color

if i == ei: # skip the extension I’m working on

return NextColor(A,i+1)

for c in colset[i]: # try each color

col[i] = c; j = 0

ok = True

while ok and j <= i:

if j != ei: # skip the extension I’m working on

x = set(A[exta[j][0]][con[exta[i][0]]])

x &= A[exta[j][1]][con[exta[i][1]]]

ok = (x <= A[con[col[j]]][c]) #check subset

j += 1

if ok and NextColor(A,i+1): return True

return False
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Implementing Comer’s one-point extension method

def ColorSets(A,ex,i):

# return sets of permissible colors between ex[i] and ex[k] for each k.

cs = [[] for x in ex]

for k in range(len(ex)):

if k != i: # skip the extension I’m working on

x = set(A[ex[i][0]][con[ex[k][0]]])

x &= A[ex[i][1]][con[ex[k][1]]]

cs[k] = list(x)

return cs

con = Converses(A)

ext = ExtensionsList(A)

collist = []

for atm in range(1,len(A)):

exta = ext[atm]

for ei in range(len(exta)):

colset = ColorSets(A,exta,ei)

col = [0 for x in exta]

if not NextColor(A,0):

return False

collist.append(col)

return collist
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A database of finite integral relation algebras up to 5 atoms

Let a, b, c , d be symmetric atoms (x−1 = x) and r , s nonsymmetric

The number of RAs up to isomorphism is given below:

2 4 8 8 16 16 32 32 32

1
,

1
,
a 1

,
rr−1 1

,
ab 1

,
arr−1 1

,
abc 1

,
rr−1ss−1 1

,
abrr−1 1

,
abcd

1 2 3 7 37 65 83 1316 3013

Their (non)representability is known up to size 16 (= 4 atoms).

For the list of 83 there are 15 RAs that are not known to be
(non)representable: 30,31,32,40,44,45,54,56,59,60,61,63,65,69,79
(see [Maddux 2006])

Unknown if representable: 235 out of 1316; 485 out of 3013
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Representable weakening relation algebras RwkRA

The set of weakening relations on a poset (X ,≤) is

Wk(X ,≤) = {R ⊆ X 2 | ≤;R;≤ = R}.

The full algebra of weakening relations on a poset (X ,≤) is

wk(X ,≤) = (Wk(X ,≤),∩,∪, ∅,⊤, ; ,≤,∼) where ∼R = X 2 \ R−1

The class of representable weakening relation algebras is

RwkRA = SP{wk(X ,≤) | (X ,≤) is a poset}.

It is a quasivariety (defined by implications) but not a variety.
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Examples of small weakening RAs

The point algebra is a relation algebra with 3 atoms idQ, <,>
where < is the strict order on the rational numbers Q.

It has two weakening subalgebras: S4 = {∅, <,≤,⊤} and
A = {∅, idQ, <,≤, <∪>,⊤}.
Like the point algebra, both can only be represented on infinite sets.

Note that A is diagonally representable, while S4 is not.

idQ >

≥

∅

<

<∪>≤

⊤ = Q2

∅

<

≤ = ∼<

⊤ = Q2

idQ

∅

< = ∼≤

<∪> = ∼idQ≤

⊤ = Q2

The point algebra S4 A
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Residuated lattices

A residuated lattice (RL) is of the form A = (A,⊓,⊔, ·, 1, \, /)
where (A,⊓,⊔) is a lattice, (A, ·, 1) is a monoid and \, / are the
left and right residuals of ·, i.e., for all x , y , z ∈ A

xy ≤ z ⇐⇒ y ≤ x\z ⇐⇒ x ≤ z/y .

The previous formula is equivalent to the following 4 identities:

x ≤ y\(yx ⊔ z) x((x\y) ⊓ z) ≤ y
x ≤ (xy ⊔ z)/y ((x/y) ⊓ z)y ≤ x

so residuated lattices form a variety.

A full Lambek (FL-)algebra is a RL with a constant 0,

used to define the linear negations ∼x = x\0 and −x = 0/x .

An involutive FL-algebra (InFL) is an FL-algebra such that
∼−x = x = −∼x . It is cyclic if ∼x = −x
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RwkRAs are cyclic distributive involutive FL-algebras

Recall that relation algebras satisfy

x ;y ⊓ z = ⊥ ⇔ z ;y−1 ⊓ x = ⊥ ⇔ x−1;z ⊓ y = ⊥

x ; y ≤ zc ⇔ x ≤ (z ; y−1)c ⇔ y ≤ (x−1; z)c

x ; y ≤ z ⇔ x ≤ (y ; z−1c)−1c ⇔ y ≤ (z−1c ; x)−1c

replacing z by zc , (x ; y)−1 = y−1; x−1 and x−1−1 = x .

So letting ∼z = z−1c , we have A ∈ RA implies

(A,⊔, ; , 1,∼) is a cyclic InFL-algebra

and it satisfies distributivity: x ⊓ (y ⊔ z) = (x ⊓ y) ⊔ (x ⊓ z)
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Distributive quasi relation algebras

To obtain nonclassical relation algebras that have the same
signature as RA, we add a unary De Morgan operation ′ that
satisfies (x ⊔ y)′ = x ′ ⊓ y ′.

[Galatos, J. 2013] A quasi relation algebra is an InFL-algebra
with a De Morgan operation such that (x ; y)′ = x ′ + y ′ where
x + y = −(∼y ;∼x).
Distributive quasi relation algebras (DqRAs) are a finitely based
variety of nonclassical RAs.

Similar to the list of 1662 residuated lattices with up to 6 elements
https://math.chapman.edu/~jipsen/preprints/RLlist3.pdf

[Galatos, J. 2017]

we recently made a list of 395 DqRAs with up to 8 elements
https://github.com/jipsen/

Distributive-quasi-relation-algebras-and-DInFL/blob/

main/DInFL1.pdf [Craig, J., Robinson 2025]
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Minimal relation algebras

A1 = BA, A2 = Cm(Z2), A3 < Cm(Z3), N11 = Rel(2)
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New minimal varieties from subreducts

A relation algebra A has a ∼-reduct Ã where c ,−1 are removed and
∼ is added.

A subalgebra of a ∼-reduct is distributive, but not necessarily
Boolean, and is called a ∼-subreduct.

If A ∈ RRA then every ∼-subreduct of A is in RwkRA and satisfies
1
,
⊓ ∼1

,
= ⊥, which means 1

,
is the identity relation.

The other nonsymmetric minimal RAs also have proper
∼-subreducts.

These algebras are called diagonal RwkRAs, and they are
discriminator algebras [J., Semrl 2023].

C1 = ⟨{1, 2,−3}⟩Cm(Z7) has 8 elements but R = {1, 2,−3}
generates a minimal variety of RwkRA with 6 elements.
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Brief background on proof assistants

Automated theorem provers have been developed since the 1960s,
see McCune and Wos [1997] for a brief history.

Mostly restricted to first-order logic: Otter, Prover9/Mace4,
SPASS, E-prover, Vampire, ...

Satisfiability Modulo Theories (SMT) solvers: Z3, CVC5, ...

Interactive theorem provers: Mizar, PVS, HOL, HOL-light,
Isabelle, Rocq, Agda, Lean, ...

Based on higher-order logics, (dependent) type theories

Large libraries of formal proofs, but no common language
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A Lean class for relation algebras

class RelationAlgebra (A : Type u) extends

BooleanAlgebra A, Comp A, One A, Inv A where

assoc : ∀ x y z : A, (x ; y) ; z = x ; (y ; z)

rdist : ∀ x y z : A, (x ⊔ y) ; z = x ; z ⊔ y ; z

comp_one : ∀ x : A, x ; 1 = x

conv_conv : ∀ x : A, x−1−1 = x

conv_dist : ∀ x y : A, (x ⊔ y)−1 = x−1 ⊔ y−1

conv_comp : ∀ x y : A, (x ; y)−1 = y−1 ; x−1

schroeder : ∀ x y : A, x−1 ; (x ; y)c ≤ yc

This definition is based on Lean’s mathlib4

Peter Jipsen Representability and formalization of DqRAs 23



Relation algebra in proof assistants

Rocq: Damien Pous, Relation Algebra and KAT in Coq, 2012,
https://perso.ens-lyon.fr/damien.pous/ra/

Isabelle: A. Armstrong, S. Foster, G. Struth, T. Weber, 2014,
Archive of Formal Proofs, Relation Algebra
https://www.isa-afp.org/entries/Relation_Algebra.html
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lemma top_conv : (⊤ : A)−1 = ⊤ := by

have : (⊤ : A)−1 = (⊤ ⊔ ⊤−1)−1 := by simp

have : (⊤ : A)−1 = ⊤−1 ⊔ ⊤ := by rw [conv_dist,

conv_conv] at this; exact this

have : (⊤ : A) ≤ ⊤−1 := by rw [left_eq_sup] at this;

exact this

exact top_unique this

lemma ldist (x y z : A) : x ; (y ⊔ z) = x ; y ⊔ x ; z :=

by

calc

x ; (y ⊔ z) = (x ; (y ⊔ z))−1−1 := by rw [conv_conv]

_ = ((y ⊔ z)−1 ; x−1)−1 := by rw [conv_comp]

_ = ((y−1 ⊔ z−1) ; x−1)−1 := by rw [conv_dist]

_ = (y−1 ; x−1 ⊔ z−1 ; x−1)−1 := by rw [rdist]

_ = ((x ; y)−1 ⊔ (x ; z)−1)−1 := by rw [←conv_comp,

←conv_comp]

_ = (x ; y) ⊔ (x ; z) := by rw [←conv_dist,

conv_conv]
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lemma comp_le_comp_right (z : A) {x y : A} (h : x ≤ y) :

x ; z ≤ y ; z := by

calc

x ; z ≤ x ; z ⊔ y ; z := by simp

_ = (x ⊔ y) ; z := by rw [←rdist]

_ = y ; z := by simp [h]

lemma comp_le_comp_left (z : A) {x y : A} (h : x ≤ y) : z

; x ≤ z ; y := by

calc

z ; x ≤ z ; x ⊔ z ; y := by simp

_ = z ; (x ⊔ y) := by rw [←ldist]

_ = z ; y := by simp [h]

lemma conv_le_conv {x y : A} (h : x ≤ y) : x−1 ≤ y−1 :=

by

calc

x−1 ≤ x−1 ⊔ y−1 := by simp

_ = (x ⊔ y)−1 := by rw [←conv_dist]

_ = y−1 := by simp [h]

Peter Jipsen Representability and formalization of DqRAs 26



lemma conv_compl_le_compl_conv (x : A) : x−1c ≤ xc−1 := by

have : x ⊔ xc = ⊤ := by simp

have : (x ⊔ xc)−1 = ⊤−1 := by simp

have : x−1 ⊔ xc−1 = ⊤ := by rw [conv_dist, top_conv]

at this; exact this

rw[join_eq_top_iff_compl_le] at this; exact this

lemma conv_compl_eq_compl_conv (x : A) : xc−1 = x−1c := by

have : x−1−1c ≤ x−1c−1 := conv_compl_le_compl_conv x−1

have : xc ≤ x−1c−1 := by rw [conv_conv] at this; exact

this

have : xc−1 ≤ x−1c−1−1 := conv_le_conv this

rw [conv_conv] at this; exact le_antisymm this

(conv_compl_le_compl_conv x)
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lemma one_conv_eq_one : (1 : A)−1 = 1 := by

calc

(1 : A)−1 = 1−1 ; 1 := by rw [comp_one]

_ = (1−1 ; 1)−1−1 := by rw [conv_conv]

_ = (1−1 ; 1−1−1)−1 := by rw [conv_comp]

_ = (1−1 ; 1)−1 := by rw [conv_conv]

_ = 1 := by rw [comp_one, conv_conv]

lemma one_comp (x : A) : 1 ; x = x := by

calc

1 ; x = (1 ; x)−1−1 := by rw [conv_conv]

_ = (x−1 ; 1−1)−1 := by rw [conv_comp]

_ = (x−1 ; 1)−1 := by rw [one_conv_eq_one]

_ = x−1−1 := by rw [comp_one]

_ = x := by rw [conv_conv]
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lemma peirce_law1 (x y z : A) :

x ; y ⊓ z = ⊥ ↔ x−1 ; z ⊓ y = ⊥ := by

constructor

· intro h

have : x ; y ≤ zc := by rw [meet_eq_bot_iff_le_compl]

at h; exact h

have : z ≤ (x ; y)c := by rw [←compl_le_compl_iff_le,

compl_compl] at this; exact this

have : x−1 ; z ≤ x−1 ; (x ; y)c := comp_le_comp_left

x−1 this

have : x−1 ; z ⊓ y ≤ ⊥ := by calc

x−1 ; z ⊓ y ≤ x−1 ; (x ; y)c ⊓ y :=

inf_le_inf_right y this

_ ≤ yc ⊓ y := inf_le_inf_right y (schroeder x y)

_ = ⊥ := by simp

exact bot_unique this
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· intro h

have : x−1 ; z ≤ yc := by rw

[meet_eq_bot_iff_le_compl] at h; exact h

have : y ≤ (x−1 ; z)c := by

rw [←compl_le_compl_iff_le, compl_compl] at this;

exact this

have : x−1−1 ; y ≤ x−1−1 ; (x−1 ; z)c :=

comp_le_comp_left x−1−1 this

have : x−1−1 ; y ⊓ z ≤ ⊥ := by calc

x−1−1 ; y ⊓ z ≤ x−1−1 ; (x−1 ; z)c ⊓ z :=

inf_le_inf_right z this

_ ≤ zc ⊓ z := inf_le_inf_right z (schroeder x−1 z)

_ = ⊥ := by simp

have : x ; y ⊓ z ≤ ⊥ := by rw [conv_conv] at this;

exact this

exact bot_unique this

lemma peirce_law2 (x y z : A) :

x ; y ⊓ z = ⊥ ↔ z ; y−1 ⊓ x = ⊥ := by

. . .
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Definitions for binary relations: Math vs. Lean

Let X be a set and R, S ,T ∈ P(X × X ) binary relations on X

import Mathlib.Data.Set.Basic

variable {X : Type u} (R S T : Set (X × X))

Define composition R ;S = {(x , y) | ∃z , (x , z) ∈ R ∧ (z , y) ∈ S}.

def composition (R S : Set (X × X)) : Set (X × X) :=

{ (x, y) | ∃ z, (x, z) ∈ R ∧ (z, y) ∈ S }

Define the inverse of R by R−1 = {(y , x) | (x , y) ∈ R}

infixl:90 " ; " => composition

postfix:100 "−1" => inverse
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theorem comp_assoc : (R ; S) ; T = R ; (S ; T) := by

rw [Set.ext_iff]

intro (a,b)

constructor

intro h

rcases h with ⟨z, h1, _⟩
rcases h1 with ⟨x,_,_⟩
use x

constructor

trivial

use z

intro h2
rcases h2 with ⟨x, h3, h4⟩
rcases h4 with ⟨y,_,_⟩
use y

constructor

use x

trivial
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Algebras of binary relations

An algebra of binary relations is a set of relations closed under
the operations ∪,∩,c , ; ,−1 , 1

,
.

Can prove the axioms of RAs hold for algebras of binary relations.

A relation algebra is representable if it is isomorphic to an algebra
of binary relations.

Roger Lyndon [1956] found axioms that hold in all algebras of
relations but not in all relation algebras.
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Shortest axioms of Roger Lyndon

J: t ≤ u; v ⊓ w ; x and u−1;w ⊓ v ; x−1 ≤ y ; z
=⇒ t ≤ (u; y ⊓ w ; z−1); (y−1; v ⊓ x ; z)

L: x ; y ⊓ z ;w ⊓ u; v ≤
x ; (x−1; u ⊓ y ; v−1 ⊓ (x−1; z ⊓ y ;w−1); (z−1; u ⊓ w ; v−1)); v

M: t ⊓ (u ⊓ v ;w); (x ⊓ y ; z) ≤
v ; ((v−1; t ⊓ w ; x); z−1 ⊓ w ; y ⊓ v−1; (u; y ⊓ t; z−1)); z
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theorem Jtrue : t ⊆ u;v ∩ w;x ∧ u−1;w ∩ v;x−1 ⊆ y;z

→ t ⊆ (u;y ∩ w;z−1);(y−1;v ∩ z;x) := by

intro h

intro (a,b)

intro h1
rcases h with ⟨h2,h3⟩
have h4 : (a, b) ∈ u ; v ∩ w ; x :=

Set.mem_of_mem_of_subset h1 h2
rcases h4 with ⟨h5, h6⟩
rcases h5 with ⟨c, h7, h8⟩
rcases h6 with ⟨d, h9, H1⟩
have H2 : (c, a) ∈ u−1 := by rw [inv]; dsimp; trivial

have H3 : (c, d) ∈ u−1 ; w := by use a

have H4 : (b, d) ∈ x−1 := by rw [inv]; dsimp; trivial

have H5 : (c, d) ∈ v ; x−1 := by use b

have H6 : (c, d) ∈ u−1 ; w ∩ v ; x−1 := by constructor;

trivial; trivial

have H7 : (c, d) ∈ y ; z := Set.mem_of_mem_of_subset H6
h3

rcases H7 with ⟨e, H8, H9⟩
. . .
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theorem Ltrue :

x;y ∩ z;w ∩ u;v ⊆ x;((x−1;z ∩ y;w−1);(z−1;u ∩ w;v−1) ∩
x−1;u ∩ y;v−1);v := by

intro (a,b)

intro h

rcases h with ⟨h1, h2⟩
rcases h1 with ⟨h3,h4⟩
rcases h3 with ⟨e, h3, h5⟩
rcases h4 with ⟨d, h3, h4⟩
rcases h2 with ⟨c, h6, h7⟩
use c

constructor

use e

constructor

trivial

constructor

constructor

use d

constructor

constructor

. . .
use a

constructor

rw [inv]

dsimp

trivial

trivial

use b

constructor

trivial

rw [inv]

dsimp

trivial

constructor

use a

constructor

rw [inv]

dsimp

trivial

trivial

use b

constructor

trivial

rw [inv]

dsimp

trivial

use a

constructor

rw [inv]

dsimp

trivial

trivial

use b

constructor

trivial

rw [inv]

dsimp

trivial

trivial

. . .
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theorem Mtrue :

t ∩ (u ∩ v ; w) ; (x ∩ y;z) ⊆ v;((v−1;t ∩ w;x);z−1 ∩
w;y ∩ v−1;(u;y ∩ t;z−1));z := by

intro (a,b)

intro h

rcases h with ⟨h1,h2⟩
rcases h2 with ⟨c,h1,h2⟩
rcases h1 with ⟨h3,h4⟩
rcases h4 with ⟨d,h5,h6⟩
rcases h2 with ⟨h7,h8⟩
rcases h8 with ⟨e,h9,h10⟩
use e

constructor

use d

constructor

trivial

constructor

constructor

use b

constructor

. . .
constructor

use a

constructor

rw [inv]

dsimp

trivial

trivial

use c

rw [inv]

dsimp

trivial

use c

use a

constructor

rw [inv]

dsimp

trivial

constructor

use c

use b

constructor

trivial

rw [inv]

dsimp

trivial

trivial

. . .
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Ralph McKenzie’s 16-element relation algebra

This algebra is named 1437 in Roger Maddux’s book [5]

It is a nonrepresentable RA of smallest cardinality

with four atoms: 1
,
, a, r , r−1 and top element ⊤ = 1

,
⊔ a ⊔ r ⊔ r−1

; 1
,

a r r−1

1
,

a a r r−1

a a 1
,
⊔ r ⊔ r−1 a ⊔ r a ⊔ r−1

r r a ⊔ r r ⊤
r−1 r−1 a ⊔ r−1 ⊤ r−1
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All 16 elements of McKenzie’s algebra

⊤

r−1ra1
,

⊥
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McKenzie’s algebra in Lean (as an atom structure)

inductive M : Type | e : M | a : M | r : M | r1 : M

open M

def M.ternary : M → M → M → Prop := fun

| e, e, e => True | e, a, a => True | e, r, r => True

| e, r1, r1 => True | a, e, a => True | a, a, e => True

| a, a, r => True | a, a, r1 => True | a, r, a => True

| a, r, r => True | a, r1, a => True | a, r1, r1 => True

| r, e, r => True | r, a, a => True | r, a, r => True

| r, r, r => True | r, r1, e => True | r, r1, a => True

| r, r1, r => True | r, r1, r1 => True | r1, e, r1 => True

| r1, a, a => True | r1, a, r1 => True | r1, r, e => True

| r1, r, a => True | r1, r, r => True | r1, r, r1 => True

| r1, r1, r1 => True | _, _, _ => False

def M.inv : M → M := fun | e => e | a => a | r=>r1 | r1=>r

def M.unary : M → Prop := fun | e => True | _ => False
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McKenzie’s algebra is nonrepresentable

Theorem [McKenzie 1966] McKenzie’s algebra 1437 is not
representable.

Proof. The formula M fails in this algebra:

Let t = a, u = r , v = a,w = a, x = r−1, y = a, z = a.

From the table we see u ⊓ v ;w = r ⊓ a; a = r ⊓ (1
,
⊔ r ⊔ r−1) = r

and x ⊓ y ; z = r−1 ⊓ a; a = r−1 ⊓ (1
,
⊔ r ⊔ r−1) = r−1.

Hence the LHS = a ⊓ r ; r−1 = a ⊓ (1
,
⊔ a ⊔ r ⊔ r−1) = a.

However the RHS = a; ((a; a ⊓ a; r−1); a ⊓ a; a ⊓ a; (r ; a ⊓ a; a)); a

= a; (r−1; a ⊓ a; a ⊓ a; r); a = a;⊥; a = ⊥ □
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A 12-element subreduct of McKenzie’s algebra

⊤

r ⊔ r−1

ra1
,

⊥

Using the network game in [J., Semrl 2023] one can check that
this ∼-subreduct is not representable.
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The amalgamation property

A class K of algebras has the amalgamation property

if for all A,B,C ∈ K and embeddings f : A→ B, g : A→ C

there exists D ∈ K and embeddings f ′ : B→ D, g ′ : C→ D such
that

A

B

C

f ′ ◦ f = g ′ ◦ g .

f

g

D

f ′

g ′

The pair ⟨f , g⟩ is called a span and ⟨D, f ′, g ′⟩ is an amalgam.

Peter Jipsen Representability and formalization of DqRAs 43



Amalgamation for residuated lattices?

Does AP hold for all residuated lattices? (open since < 2002)

Commutative residuated lattices satisfy x · y = y · x

Kowalski, Takamura [2004]: AP holds for commutative RLs

Many other results are know for various subvarieties, e.g.,

Heyting algebras are integral (x ≤ 1) idempotent (xx = x) RLs

Maksimova [1977]: Exactly 8 varieties of Heyting algebras have AP
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J. and Santschi 2025: AP fails for residuated lattices

A

⊤

1

⊥

B

⊤ = ⊤b

a

b = b⊤
= ba

1

⊥

C

⊤

c = c⊤1

⊥ = c2

f

g

black = idempotent, round = central

Theorem: AP fails for RL Proof: Straightforward to check A,B,C

are RLs and f , g are embeddings.

Assume by contradiction ∃ amalgam D.

1 ∨ c = ⊤ and 1 ∨ b = 1 ∨ a = a < ⊤
hence g ′(c) ̸= f ′(a) and g ′(c) ̸= f ′(b).

So f ′, g ′ are inclusions and B,C ≤ D

Now, since c = c⊤ and ⊤b = ⊤,
in D we have cb = c⊤b = c⊤ = c .

Moreover ⊤ = 1 ∨ c and c2 = ⊥,
show c = ⊤c = ⊤bc = (1 ∨ c)bc

= bc ∨ cbc = bc ∨ c2 = bc ∨ ⊥ = bc

(using ⊥ ≤ c implies ⊥ = b⊥ ≤ bc).

But also b = b⊤ = b(1 ∨ c) = b ∨ bc

gives c = bc ≤ b ≤ a. Hence

⊤ = 1 ∨ c ≤ a ∨ c = a; contradiction!
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Some remarks

The proof on the previous slide also shows that the AP already
fails for the variety of distributive residuated lattices,

as well as for the {\, /}-free subreducts of residuated lattices, i.e.,
for lattice-ordered monoids.

Also the proof does not depend on meet or on the constant 1
being in the signature, so the following varieties do not have AP:

• residuated lattice-ordered semigroups,

• lattice-ordered semigroups,

• residuated join-semilattice-ordered semigroups and

• join-semilattice-ordered semigroups.

Similar examples show that AP fails in idempotent RLs and in
involutive FL-algebras.
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