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Naming parts and definitions (1)

Theory T - a set of formulas.

We consider first order formulas and theories only!

Theory T is consistent if it is NOT the case that:

φ ∈ T and (¬φ) ∈ T .

We denote a consequence relation by ⊢.
Structure M is a model of theory T if:

∀φ ∈ T : M |= φ.
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Naming parts and definitions (2)

If a theory is consistent then it has a model.

Two theories are equivalent if they have the same collection
of models.

We say that theory T is infinite if |T | ­ ℵ0.
Let T1,T2 be theories such that |T2| < |T1|. If T1 and T2 are
equivalent then we say that T1 is reducible to T2.
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Original theorem

Theorem (Basic)

Let T be an infinite, consistent theory. If:
1 T has no finite model,
2 Every finite subset of T has a finite model,

then T is not equivalent to any finite theory.

Let us analyze the proof . . .
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Proof of the original theorem (1)

Let’s conduct the proof indirectly:

Assume T is equivalent with some finite T0.

Hence ∀φ ∈ T0 : T ⊢ φ.
In particular, ∀φ ∈ T0 there exists Sφ ⊆fin T such that:

Sφ ⊢ φ.

Let us consider Ŝ =
⋃
φ∈T0

Sφ.

Since T0 is finite and each of Sφ is finite the Ŝ is finite as well.
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Proof of the original theorem (2)

Let us notice that Ŝ ⊢ T0 but also T0 ⊢ T so in particular:

Ŝ ⊢ T

Since also Ŝ ⊆ T then:

T ⊢ Ŝ .

Hence Ŝ and T are equivalent.

So Ŝ and T have the same models.
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Proof of the original theorem (3)

Theorem (Basic)

Let T be an infinite, consistent theory. If:
1 T has no finite model,
2 Every finite subset of T has a finite model,

then T is not equivalent to any finite theory.

From 2. =⇒ there is a finite model M
Ŝ
of theory Ŝ .
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Proof of the original theorem (4)

Theorem (Basic)

Let T be an infinite, consistent theory. If:
1 T has no finite model,
2 Every finite subset of T has a finite model,

then T is not equivalent to any finite theory.

From 2. =⇒ there is a finite model M
Ŝ
of Ŝ .

From 1. =⇒ M
Ŝ
is not a model of T because of M

Ŝ
finiteness.

We arrived at a contradiction.
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Generalization

The previous theorem can be generalized to larger cardinalities of
the set:

Theorem (Extended)

Let T be a consistent theory of infinite cardinality κ. If every
proper subset S ⊆ T , such that |S | < |T | has a model MS which
is not a model of T then T is not equivalent with any other theory
T̂ such that |T̂ | < κ.

Let us slightly modify the proof of the previous theorem . . .
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Proof of the modified theorem (1)

We proceed indirectly (as in case of Basic Theorem)

Assume T is equivalent with some theory T̂ , such that:

|T̂ | = λ < κ

Hence, every formula φ ∈ T̂ is a consequence of T , i. e. for
every φ in T̂ :

T ⊢ φ.

In particular, for every φ ∈ T̂ there exists Sφ ⊆fin T such that:

Sφ ⊢ φ.
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Proof of the modified theorem (2)

Let:
Ŝ =

⋃
φ∈T̂

Sφ.

Then:
Ŝ ⊢ T̂ .

Also:
T̂ ⊢ T .

Hence:
Ŝ ⊢ T .

Since:
Ŝ ⊆ T

then:
T ⊢ Ŝ .

So T and Ŝ are equivalent and have the same models.
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Proof of the modified theorem (3)

Let us establish the cardinality of Ŝ .

Each of Sφ is finite so let us denote |Sφ| = nφ.

Then:
|Ŝ | = |

⋃
φ∈T̂

Sφ| = λ · nφ = λ.

But |Ŝ | < |T | and Ŝ ⊆ T .

Then, from the assumptions of the theorem, there is a
structure M such that it is a model of Ŝ but it is not a model
of T .

We arrived at a contradiction with the fact that Ŝ and T have
the same models.
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Important remark

Theorem (Extended)

Let T be a consistent theory of infinite cardinality κ. If every
proper subset S ⊆ T , such that |S | < |T | has a model MS which
is not a model of T then T is not equivalent with any other theory
T̂ such that |T̂ | < κ.

Remark

The assumptions of the Extended Theorem do not exclude the
existence of structures which are models for both T and T̂ .
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Example (1)

Let T be a theory with only one binary relation symbol R.
T models relation R the way it is an equivalence relation such
that:

R has countably infinite many equivalence classes.
Each of these classes is itself countably infinite.
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Example (1) continued

∀a : aRa,

∀a∀b∀c : aRb ∧ bRc =⇒ aRc ,

∀a∀b : aRb =⇒ bRa,
φn = ∀a1∀a2 . . . ∀an∃b:∧
1¬i,j¬n,i ̸=j

¬(ai = aj) ∧
∧

1¬i¬n−1

(aiRai+1) =⇒ (bRa1) ∧
∧
1¬i¬n

¬(b = ai ),

for n ∈ N,
ψn = ∀a1∀a2 . . . ∀an∃b :∧
1¬i,j¬n,i ̸=j

¬(ai = aj)∧.
∧

1¬i¬n−1

(aiRai+1) =⇒ ¬(bRa1) ∧
∧
1¬i¬n

¬(b = ai ),

for n ∈ N.
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Example (1) continued

The formula φi states that given i elements in an equivalence
class then there is a (i + 1)th element in this class as well.

The formula ψi states that given i elements in an equivalence
class then there is another element which does not belong to
this class.

Let us assume that T0 ⊆fin T .

To create a model M0 of theory T0 it is sufficient to construct
an equivalence relation on some subset of N which has K2
different equivalence classes each of which contain K1
elements.

But obviously such a model is not a model of T . Applying
Extended Theorem to T we obtain that T cannot be
reduced to any finite theory.
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Example (2)

Let us consider a theory T of a vector space over R.

To encode such a vector space we need to consider each
multiplication by a scalar from R to be a function in the
model.
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Example (2) continued

∀u∀v∀w : u + (v + w) = (u + v) + w ,

∀u∀v : u + v = v + u,

∀u : 0+ u = u,

∀u∃v : u + v = 0,

φa = ∀u∀v : fa(u + v) = fa(u) + fa(v), where a ∈ R,

ψa,b = ∀u : fa+b(v) = fa(v) + fb(v), where a, b ∈ R,

ηa,b = ∀u : fa·b(u) = fa(fb(u)), where a, b ∈ R,

∀u : f1(v) = v , where 1 ∈ R.
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Example (2) continued

Let us notice that taking a proper, countable subset A ⊊ R
such that |A| = ℵ0.
Then let’s consider theory TA consisting of only such φa, ψa,b

and ηa,b so a, b, (a+ b), (a · b) ∈ A.

TA has a model MA which is simply a restriction of the whole
R to its subset A performing an action on the family of
vectors.

It is important to notice that such a restriction does not have
to be a field itself.

Hence MA need not to be a model of T .

It is always possible to construct such a model assigning fc to
be an identity function, for all c ∈ R \ A.
Then MA is not a vector space.
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Example (2) continued

Having that for an arbitrary subset A, we arrive at premises of
the Extended Theorem.

After applying it we obtain that theory T cannot be reduced
to any theory T ′ such that |T ′| < |T |.
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Thank you for your attention !
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