Non-reducible infinite theories of the first order

Adam Mata adam.mata.dokt@pw.edu.pl

Faculty of Mathematics and Information Science Warsaw University of Technology

- Theory *T* **a set** of formulas.
- We consider first order formulas and theories only!
- Theory T is **consistent** if it is **NOT** the case that:

 $\phi \in T$ and $(\neg \phi) \in T$.

- We denote a **consequence relation** by \vdash .
- Structure $\mathcal M$ is a **model** of theory $\mathcal T$ if:

$$\forall \phi \in T : \mathfrak{M} \models \phi.$$

- If a theory is **consistent** then it has a model.
- Two theories are **equivalent** if they have the same collection of models.
- We say that theory T is **infinite** if $|T| \ge \aleph_0$.
- Let T_1 , T_2 be theories such that $|T_2| < |T_1|$. If T_1 and T_2 are equivalent then we say that T_1 is reducible to T_2 .

Theorem (Basic)

Let T be an infinite, consistent theory. If:

- T has no finite model,
- 2 Every finite subset of T has a finite model,

then T is not equivalent to any finite theory.

Let us analyze the proof ...

Let's conduct the proof **indirectly**:

- Assume T is equivalent with some finite T_0 .
- Hence $\forall \phi \in T_0 : T \vdash \phi$.
- In particular, $\forall \phi \in T_0$ there exists $S_{\phi} \subseteq_{fin} T$ such that:

$$S_{\phi} \vdash \phi$$
.

• Let us consider
$$\widehat{S} = \bigcup_{\phi \in \mathcal{T}_0} S_{\phi}.$$

• Since T_0 is finite and each of S_{ϕ} is finite the \widehat{S} is finite as well.

• Let us notice that $\widehat{S} \vdash T_0$ but also $T_0 \vdash T$ so in particular:

$$\widehat{S} \vdash T$$

• Since also $\widehat{S} \subseteq T$ then:

$$T \vdash \widehat{S}$$
.

Hence S and T are equivalent.
So S and T have the same models.

Theorem (Basic)

Let T be an infinite, consistent theory. If:

- T has no finite model,
- every finite subset of T has a finite model,

then T is not equivalent to any finite theory.

• From 2. \implies there is a **finite** model $\mathcal{M}_{\widehat{S}}$ of theory \widehat{S} .

Theorem (Basic)

Let T be an infinite, consistent theory. If:

- T has no finite model,
- 2 Every finite subset of T has a finite model,

then T is not equivalent to any finite theory.

- From 2. \implies there is a **finite** model $\mathcal{M}_{\widehat{S}}$ of \widehat{S} .
- From 1. $\implies \mathcal{M}_{\widehat{S}}$ is **not** a model of T because of $\mathcal{M}_{\widehat{S}}$ finiteness.
- We arrived at a contradiction.

The previous theorem can be generalized to larger cardinalities of the set:

Theorem (Extended)

Let T be a consistent theory of infinite cardinality κ . If every proper subset $S \subseteq T$, such that |S| < |T| has a model M_S which is not a model of T then T is not equivalent with any other theory \hat{T} such that $|\hat{T}| < \kappa$.

Let us slightly modify the proof of the previous theorem

Proof of the modified theorem (1)

- We proceed indirectly (as in case of **Basic Theorem**)
- Assume T is equivalent with some theory \hat{T} , such that:

$$|\widehat{T}| = \lambda < \kappa$$

 Hence, every formula φ ∈ T is a consequence of T, i. e. for every φ in T:

$$T \vdash \phi$$
.

• In particular, for every $\phi \in \widehat{T}$ there exists $S_{\phi} \subseteq_{fin} T$ such that:

$$S_{\phi} \vdash \phi$$
.

Proof of the modified theorem (2)

•	Let: \widehat{S}	$= \bigcup S_{\phi}.$
		$\phi \in \widehat{T}$
•	Then:	$\widehat{S} \vdash \widehat{T}.$
•	Also:	$\widehat{T} \vdash T.$
•	Hence:	$\widehat{S} \vdash T.$
•	Since:	$\widehat{S} \subseteq T$
	then:	$T \vdash \widehat{S}.$
•	So T and \widehat{S} are equivalent and have the same models.	

2025

Proof of the modified theorem (3)

- Let us establish the cardinality of \widehat{S} .
- Each of S_{ϕ} is finite so let us denote $|S_{\phi}| = n_{\phi}$.
- Then:

$$|\widehat{S}| = |\bigcup_{\phi\in\widehat{T}} S_{\phi}| = \lambda \cdot n_{\phi} = \lambda.$$

• But
$$|\widehat{S}| < |T|$$
 and $\widehat{S} \subseteq T$.

- Then, from the assumptions of the theorem, there is a structure M such that it is a model of S but it is not a model of T.
- We arrived at a contradiction with the fact that \widehat{S} and ${\cal T}$ have the same models.

Theorem (Extended)

Let T be a consistent theory of infinite cardinality κ . If every proper subset $S \subseteq T$, such that |S| < |T| has a model M_S which is not a model of T then T is not equivalent with any other theory \hat{T} such that $|\hat{T}| < \kappa$.

Remark

The assumptions of the **Extended Theorem** do not exclude the existence of structures which are models for both T and \hat{T} .

- Let T be a theory with only one binary relation symbol R.
- *T* models relation *R* the way it is an equivalence relation such that:
 - *R* has countably infinite many equivalence classes.
 - Each of these classes is itself countably infinite.

Example (1) continued

- ∀a : aRa,
- $\forall a \forall b \forall c : aRb \land bRc \implies aRc$,

•
$$\forall a \forall b : aRb \implies bRa$$
,

•
$$\phi_n = \forall a_1 \forall a_2 \dots \forall a_n \exists b_n$$

$$\bigwedge_{1\leqslant i,j\leqslant n,i\neq j}\neg(a_i=a_j)\wedge\bigwedge_{1\leqslant i\leqslant n-1}(a_iRa_{i+1})\implies (bRa_1)\wedge\bigwedge_{1\leqslant i\leqslant n}\neg(b=a_i),$$

for
$$n \in \mathbb{N}$$
,

•
$$\psi_n = \forall a_1 \forall a_2 \dots \forall a_n \exists b$$
:

$$\bigwedge_{1\leqslant i,j\leqslant n,i\neq j}\neg(a_i=a_j)\land\bigwedge_{1\leqslant i\leqslant n-1}(a_iRa_{i+1})\implies \neg(bRa_1)\land\bigwedge_{1\leqslant i\leqslant n}\neg(b=a_i),$$

▲ 伊 ▶ ▲ 三 ▶ ▲

⇒ →

for $n \in \mathbb{N}$.

Example (1) continued

- The formula ϕ_i states that given *i* elements in an equivalence class then there is a $(i + 1)^{th}$ element in this class as well.
- The formula ψ_i states that given i elements in an equivalence class then there is another element which does not belong to this class.
- Let us assume that $T_0 \subseteq_{fin} T$.
- To create a model \mathcal{M} of theory \mathcal{T}_0 it is sufficient to construct an equivalence relation on some subset of \mathbb{N} which has K_2 different equivalence classes each of which contain K_1 elements.
- But obviously such a model is not a model of *T*. Applying **Extended Theorem** to *T* we obtain that *T* cannot be reduced to any finite theory.

- Let us consider a theory T of a vector space over \mathbb{R} .
- To encode such a vector space we need to consider each multiplication by a scalar from $\mathbb R$ to be a function in the model.

Example (2) continued

- $\forall u \forall v \forall w : u + (v + w) = (u + v) + w$,
- $\forall u \forall v : u + v = v + u$,
- $\forall u : \mathbf{0} + u = u$,

•
$$\forall u \exists v : u + v = 0$$
,

- $\phi_a = \forall u \forall v : f_a(u + v) = f_a(u) + f_a(v)$, where $a \in \mathbb{R}$,
- $\psi_{a,b} = \forall u : f_{a+b}(v) = f_a(v) + f_b(v)$, where $a, b \in \mathbb{R}$,
- $\eta_{a,b} = \forall u : f_{a \cdot b}(u) = f_a(f_b(u))$, where $a, b \in \mathbb{R}$,

•
$$\forall u : f_1(v) = v$$
, where $1 \in \mathbb{R}$.

Example (2) continued

- Let us notice that taking a proper, countable subset A ⊊ ℝ such that |A| = ℵ₀.
- Then let's consider theory *T_A* consisting of only such φ_a, ψ_{a,b} and η_{a,b} so a, b, (a + b), (a ⋅ b) ∈ A.
- It is important to notice that such a restriction does not have to be a field itself.
- Hence \mathcal{M}_A need not to be a model of \mathcal{T} .
- It is always possible to construct such a model assigning f_c to be an identity function, for all c ∈ ℝ \ A.
- Then \mathcal{M}_A is not a vector space.

- Having that for an arbitrary subset *A*, we arrive at premises of the **Extended Theorem**.
- After applying it we obtain that theory T cannot be reduced to any theory T' such that |T'| < |T|.

- C. C. Chang, H. J. Keisler, *Model Theory*, Elsevier, 1990.
- R. Cori, D. Lascar, *Mathematical Logic: Part II*, Oxford University Press, 2001.
- A. Mata, Non-reducible infinite theories of the first order, arxiv.org, 2025.

Thank you for your attention !

문 🛌 문