On the preservation of unification type of Heyting algebras and locally finite interior algebras.

Ivo Düntsch	Wojciech Dzik
Dept. of Computer Science	Institute of Mathematics
Brock University	University of Silesia
St Catharines, Ontario, Canada	Katowice, Poland
duentsch@brocku.ca	wojciech.dzik@us.edu.pl

Previously, the results on unification types in intermediate logics (varieties of Heyting algebras) and their modal companions via Gödel-Tarski translation (varieties of interior algebras) were proved separately, although the final results were the same, see e.g. Ghilardi [4], [5], Dzik et al. [2]. Following McKinsey and Tarski [6], Blok [1] exhibited two functors between the category IA of interior algebras and the category IHA of Heyting algebras

 $O: \mathbb{IA} \to \mathbb{HA}, \quad \mathcal{B}: \mathbb{HA} \to \mathbb{IA}.$

We will investigate the following questions:

- 1. If V is a variety of interior algebras and $A \in V$, what is the unification type of A in V compared to the unification type of O(A) in O[V]? What is the type of V when compared to the type of O[V]?
- 2. If V is a variety of Heyting algebras and $L \in V$, what is the unification type of L in V compared to the unification type of $\mathcal{B}(L)$ in $\mathbf{Eq}(\mathcal{B}[V])^{-1}$? What is the type of V when compared to the type of $\mathbf{Eq}(\mathcal{B}[V])$?

We shall answer these questions if the varieties of interior algebras involved are locally finite Grzegorczyk algebras. We employ the algebraic approach to unification due to Ghilardi [3] which is based on finitely presented and projective objects.

¹A variety generated by the free Boolean extensions of $L \in \mathbf{V}$

References

- [1] Blok, W. (1976). Varieties of Interior Algebras. PhD thesis, University of Amsterdam.
- [2] Dzik, W., Kost, S., and Wojtylak, P. (2022). Finitary unification in locally tabular modal logics characterized. *Ann. Pure Appl. Logic*, 173(4):Paper No. 103072.
- [3] Ghilardi, S. (1997). Unification through projectivity. J. Logic Comput., 7(6):733–752. MR1489936.
- [4] Ghilardi, S. (1999). Unification in intuitionistic logic. J. Symbolic Logic, 64(2):859– 880. MR1777792.
- [5] Ghilardi, S. (2000). Best solving modal equations. *Ann. Pure Appl. Logic*, 102(3):183–198. MR1740482.
- [6] McKinsey, J. C. C. and Tarski, A. (1946). On closed elements in closure algebras. *Ann. of Math.* (2), 47:122–162. MR15037.