On congruences of Płonka sums

S. Bonzio¹ and G. Zecchini¹

Department of Mathematics and Computer Science, University of Cagliari, Italy.

1 Introduction

The Płonka sum is a construction introduced in the 1960s in Universal Algebra by the eponymous Polish mathematician [2] (see also [4, 1]) that allows to construct a new algebra out of a semilattice direct system of similar (disjoint) algebras, called the fibers (of the system). The theory of Płonka sums has been mostly studied in the case of a similarity type without constant functional symbols: in such a case the fibers are subalgebras of their Płonka sum.

Plonka sums are strictly connected with regular identities. Recall that an identity $\alpha \approx \beta$ (in an algebraic language τ and over some set of variables X) is regular if $Var(\alpha) = Var(\beta)$. An identity $\alpha \approx \beta$ is valid in the Plonka sum over a non-trivial semilattice direct system $\mathbb{A} = ((\mathbf{A}_i)_{i \in I}, (I, \leq), (p_{ij})_{i \leq j})$ (i.e. $|I| \geq 2$) if and only if it is a regular identity valid in each of the fibers of \mathbb{A} .

Given a class of similar algebras \mathcal{K} , its *regularization* is the variety $\mathcal{R}(\mathcal{K})$ defined by the regular identities valid in \mathcal{K} . This variety is particularly interesting when the class \mathcal{K} is a strongly irregular τ -variety \mathcal{V} - an assumption that includes almost all examples of known irregular varieties -, i.e. a variety satisfying an identity of the form $p(x, y) \approx x$ for some binary τ -term p: in such a case, every algebra in $\mathcal{R}(\mathcal{V})$ is the Plonka sum over a semilattice direct system (with zero) of algebras in \mathcal{V} .

In [1] a very natural (open) **problem** is posed: to describe the congruence lattice of algebras in regular varieties.

In this talk, we will give a brief overview of the theory of Płonka sums over an algebraic language with constant symbols [3], with a particular emphasis on the structural aspects. Then we will address the aforementioned problem in the case of algebras in the regularization of a strongly irregular variety.

2 Congruences of Płonka Sums

Let $\mathbb{A} = ((\mathbf{A}_i)_{i \in I}, (I, \leq), (p_{ij})_{i \leq j})$ be a semilattice direct system in a strongly irregular τ -variety \mathcal{V} , whose strongly irregularity is witnessed by a binary term $\cdot(x, y)$, and \mathbf{A} its Płonka sum. Let's begin our investigation by starting with a congruence and trying to deduce its essential structural features.

Let $\theta \in Con(\mathbf{A})$, then some very natural objects can be associated with it:

- $\forall (i,j) \in I \times I : \theta_{ij} := \theta \cap (A_i \times A_j);$
- $S_{\theta} := \{(i, j) \in I \times I \mid \theta_{ij} \neq \emptyset\}.$

Observe that the strong irregularity of \mathcal{V} provides the following useful fact.

On congruences of Płonka sums

S. Bonzio, G. Zecchini

Lemma 1. Let τ be any algebraic language, then $\forall (i,j) \in S_{\theta}, \forall a \in A_i : (a, p_{ii \lor j}(a)) \in \theta$. Moreover, S_{θ} is a reflexive and symmetric subsemilattice of $\mathbf{I} \times \mathbf{I}$.

Unfortunately, transitivity is not guaranteed, as the following example illustrates.

Example 1. Consider the following Plonka sum, where the two bottom fibers are trivial lattices, while the top fiber is the two-element lattice.

Then $\theta = [[0,3], [1,2]]$ is a congruence on **A** with S_{θ} not being transitive, since $(i,k), (k,j) \in S_{\theta}$, but $(i,j) \notin S_{\theta}$.

However, a (kind of) weak form of transitivity, outlined in the following Lemma, is always valid.

Lemma 2. Let τ be any algebraic language, then $\forall i, j, k \in I : (i, j), (j, k) \in S_{\theta} \Rightarrow (i, i \lor k) \in S_{\theta}$.

To simplify the exposition, we will say that S_{θ} is **upper transitive**. Actually, thanks to Lemmas 1 and 2, we can provide an exact characterization for transitivity.

Lemma 3. Let τ be any algebraic language. For every $i, j, k \in I$ such that $(i, j), (j, k) \in I$ T.F.A.E.

- 1. $(i,k) \in S_{\theta};$
- 2. $(p_{ii\vee k} \times p_{ki\vee k})^{-1}(\theta_{i\vee k,i\vee k}) \neq \emptyset.$

Remark 1. Observe that in Example 1 we have $(p_{ik} \times p_{jk})^{-1}(\theta_{kk}) = \emptyset$, and this explains the non-transitivity of S_{θ} .

In some particular, yet relevant, cases, S_{θ} turns out to be a congruence on **I**.

Corollary 1. Let τ be any algebraic language. If one of the following occurs:

- (i) I is a chain;
- (ii) τ be an algebraic language containing constants

then $S_{\theta} \in Con(\mathbf{I})$.

Consequently, transitivity is always ensured for algebraic languages having constants. The necessary conditions that we have highlighted through the preceding Lemmas provide a complete characterization of an element of $Con(\mathbf{A})$, as illustrated by the following Theorem.

Theorem 1. Let τ be any algebraic language. Let $S \subseteq I \times I$ and $(\theta_{ii})_{i \in I}$ be a family such that the following conditions occur:

- (i) S is a reflexive, symmetric and upper transitive subsemilattice of $\mathbf{I} \times \mathbf{I}$;
- (*ii*) $\forall i \in I : \theta_{ii} \in Con(\mathbf{A}_i);$

On congruences of Płonka sums

S. Bonzio, G. Zecchini

(*iii*) $\forall (i,j) \in I \times I : \theta_{ii} \subseteq (p_{ii \lor j} \times p_{ii \lor j})^{-1}(\theta_{i \lor j, i \lor j}), \text{ with equality if } (i,j) \in S;$ (*iv*) $\forall (i,j) \in I \times I : (i,j) \in S \iff (i,i \lor j), (j,i \lor j) \in S, (p_{ii \lor j} \times p_{ji \lor j})^{-1}(\theta_{i \lor j, i \lor j}) \neq \emptyset$

For every $(i, j) \in S \setminus \Delta_{\mathbf{I}}$, let $\theta_{ij} := (p_{ii \vee j} \times p_{ji \vee j})^{-1}(\theta_{i \vee j, i \vee j})$, then

$$\theta := \bigcup_{(i,j) \in S} \theta_{ij} \in Con(\mathbf{A}).$$

Furthermore, all the elements of $Con(\mathbf{A})$ arise in this way.

In the case of an algebraic language containing constants, the characterization takes on a simpler form.

Theorem 2. Let τ be an algebraic language containing constants (or suppose \mathcal{V} admits an algebraic constant). Let $S \subseteq I \times I$ and $(\theta_{ii})_{i \in I}$ a family such that the following conditions occur:

- (i) $S \in Con(\mathbf{I});$
- (*ii*) $\forall i \in I : \theta_{ii} \in Con(\mathbf{A}_i);$
- (*iii*) $\forall (i,j) \in I \times I : \theta_{ii} \subseteq (p_{ii \lor j} \times p_{ii \lor j})^{-1}(\theta_{i \lor j, i \lor j}), \text{ with equality if } (i,j) \in S;$
- (*iv*) $\forall (i,j) \in S : (p_{ii \lor j} \times p_{ji \lor j})^{-1}(\theta_{i \lor j, i \lor j}) \neq \emptyset.$

For every $(i, j) \in S \setminus \Delta_{\mathbf{I}}$ let $\theta_{ij} := (p_{ii \vee j} \times p_{ji \vee j})^{-1}(\theta_{i \vee j, i \vee j})$, then

$$\theta := \bigcup_{(i,j)\in S} \theta_{ij} \in Con(\mathbf{A}).$$

Furthermore, all the elements of $Con(\mathbf{A})$ arise in this way.

References

- S. Bonzio, F. Paoli, and M. Pra Baldi. Logics of Variable Inclusion. Springer, Trends in Logic, 2022.
- J. Płonka. On a method of construction of abstract algebras. Fundamenta Mathematicae, 61(2):183– 189, 1967.
- [3] J. Płonka. On the sum of a direct system of universal algebras with nullary polynomials. Algebra Universalis, 19(2):197–207, 1984.
- [4] J. Płonka and A. Romanowska. Semilattice sums. In A. Romanowska and J. D. H. Smith, editors, Universal Algebra and Quasigroup Theory, pages 123–158. Heldermann, 1992.