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About

Cracow Logic Conference (CLoCk) is the oldest Polish conference series on logic. For many years it existed
under a deceptive name Konferencja Historii Logiki (Conference on the History of Logic), and was for the
most part limited to the Polish logic community. This year’s conference will be the 69th in that series: LXIX
KHL for those who care. Since 2023, CLoCk went truly international and welcomes contributions on all
areas of symbolic logic. Purely philosophical contributions are not automatically excluded, but are frowned
upon. CLoCk also sees itself as a continuation of the AsubL workshop series, so mathematical approaches to
nonclassical logics are preferred.

Trends in Logic is the conference series of the journal Studia Logica aimed at worldwide promotion of logic
and Studia Logica. The series began in 2003, and have been held annually at different logic centres. Apart
from Poland, Trends in Logic conferences were held in Denmark, China, Belgium, The Netherlands, Germany,
Italy, USA, Georgia, Argentina, Brazil, Russia and Ukraine. The series has been instrumental in increasing
the visibility of Studia Logica and elevating its international standing.

The conference is hosted by the Department of Logic, Institute of Philosophy, Jagiellonian University in
Kraków, Co-organized by the JU Doctoral School in the Humanities.

Invited speakers

• Guillermo Badia

• Marta Bílková

• Thomas Ferguson

• Mai Gehrke

• Dorota Leszczyńska-Jasion

• Francesco Paoli

• Michał Stronkowski

• Kordula Świętorzecka

• Yde Venema

Program committee

Andrzej Indrzejczak Tomasz Kowalski Piotr Łukowski
Jacek Malinowski Heinrich Wansing

Organizing committee

Zalán Gyenis Tomasz Kowalski Krzysztof Krawczyk
Piotr Łukowski Adam Trybus

4

https://sites.unica.it/asubl6/
http://www.studialogica.org/


Timetable

Tuesday, June 18, 2024

9:00–9:30 Registration, opening

9:30–10:00
Jacek Malinowski
Studia Logica

Studia Logica. Past, present and future

10:00–10:30
Anna Brożek1 and Zofia Hałęza2

1Uniwersytet Warszawski, 2Uniwersytet
Łódzki

The Origin of Studia Logica and Warsaw as
the World Capital of Mathematical Logic

10:30–11:00
General discussion of the history of Studia
Logica

11:00–12:00
Yde Venema
Institute for Logic, Language and
Computation

Propositional Dynamic Logic (re)visited

12:00–14:00 Lunch break

14:00–15:00
Michał Stronkowski
Warsaw University of Technology

Profinite Heyting algebras

15:00–15:30 Break

15:30–16:00
Thomas Ferguson
Rensselaer Polytechnic Institute

Bounds Consequence and Liberalizing
Semantic Values
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Wednesday, June 19, 2024

9:00-10:00
Guillermo Badia
The University of Queensland

A modular bisimulation characterisation for
fragments of hybrid logic

10:00–10:30 Coffee

10:30-11:30
Mai Gehrke
Université Cote d’Azur

Canonical extension of lattices

11:30–12:00
A

Wesley Fussner
Institute of Computer Science of the
Czech Academy of Sciences

Poset Products and Strict Implication

B
Piotr Kulicki
The John Paul II Catholic Univertsity of
Lublin

On norms defined on sequentially
composed actions

12:00–14:00 Lunch break

14:00–14:30
A

Michał Wrocławski
University of Warsaw, Faculty of
Philosophy

Punctual presentability of injective
structures and trees

B Sebastian G.W. Speitel
University of Bonn

Logicality and Determinacy

14:30–15:00
A

Katarzyna Słomczyńska
University of the National Education
Commission, Kraków

Free p-algebras

B Agata Tomczyk
Adam Mickiewicz University

Sequent Calculi for Two non-Fregean
Theories

15:00–15:30 Coffee

15:30–16:00
A Filip Jankovec

Institute of Computer Science, CAS
Infinitary semilinear extensions of Abelian
logic

B András Kornai
Budapest University of Technology

Mechanical causation as relevant
implication

18:00 Conference Dinner
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Thursday, June 20, 2024

9:00–10:00
Dorota Leszczyńska-Jasion
Adam Mickiewicz University, Poznań

From questions to proofs and back: on
questions in proof systems

10:00–10:30 Coffee

10:30–11:30
Marta Bílková
Institute of Computer Science, The
Czech Academy of Sciences

Epistemic Logics of Structured Intensional
Groups: Agents - Groups - Names - Types

11:30–12:00
A

Javier Vineta
Departamento de Filosofia de la
Universidad de Navarra

On a Generalization of all Strong Kleene
Generalizations of Classical Logic

B
Paweł Płaczek
WSB Merito University in Poznań,
Poland

Semiassociative Lambek Calculus: Sequent
systems and algebras

12:00–14:00 Lunch break

14:00–15:00
Francesco Paoli
Department of Pedagogy, Psychology,
Philosophy, Universita di Cagliari

Multi-relation Agassiz sums of algebras

15:00–15:30 Coffee

15:30–16:00
A Martina Zirattu

University of Turin, Italy
Uniform Week Kleene Logics

B
Ren-June Wang
Department of Philosophy, National
Chung-Cheng University

On the normal form of deductions in
sequent calculus for intuitionistic logic
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Friday, June 21, 2024

9:00–10:00
Kordula Świętorzecka
C. S. Wyszyński University in Warsaw,
Poland

When change describes time. Five logics of
change for temporal reductionists

10:00–10:30 Coffee

10:30–11:00
A

Ondrej Majer and Igor Sedlar
Institute of Computer Science, Czech
Academy of Sciences

A Logic of Probability Dynamics

B
Camillo Fiore
University of Buenos Aires /
IIF-SADAF-CONICET

Maximally Substructural Classical Logic

11:00–11:30
A

Gaia Belardinelli and Ondrej
Majer
University of California, Davis; CAS

Attention to Attention

B
Camillo Fiore
University of Buenos Aires /
IIF-SADAF-CONICET

Notational Variance in Substructural Logics

11:30–12:00
A

Piotr Błaszczyk
University of the National Education
Commission, Krakow, Poland

Reading Newton’s De Analysi by
hyperfinite sums

B Andrea Sabatini
Scuola Normale Superiore di Pisa

Hypersequent calculi for propositional
default logics

12:00–14:00 Lunch break

14:00–14:30
A Yaroslav Petrukhin

University of Łódź
Natural deduction for definite descriptions
in strong Kleene free logic

B Agustina Borzi
IIF-SADAF-CONICET, UBA

General Tableaux Method for
Metainferential Logics

14:30–15:00
A José Martín Castro-Manzano

UPAEP University
Non-Deductive Term Logic Tableaux

B
Rodrigo Mena Gonzalez
Ludwig-Maximilians-Universität
München

One Problem from Carnap and Wójcicki

15:00–15:30
A Nicolò Zamperlin

University of Cagliari
Generalized set-assignment semantics for
Parry systems

B
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Abstracts

Tuesday 18th

Studia Logica. Past, present and future

Jacek Malinowski 9:30–10:00

Studia Logica, and Department of Logic and Cognitive Science, Polish Academy of Science

This is a presentation opening Studia Logica conferences Trends in Logic. It presents journal missions,
editors, editorial board, journal special issues, Trends in Logic conferences, Studia Logica Library book series
consisting of Trends in Logic, Outstanding Contributions to Logic and logic in Asia, brief journal history and
scientometrics.

The Origin of Studia Logica and Warsaw as the World Capital of Mathematical
Logic

Anna Brożek1, Zofia Hałęza2 10:00–10:30

1Uniwersytet Warszawski,
2Uniwersytet Łódzki

In 1929, Jan Łukasiewicz published an article titled "O znaczeniu i potrzebach logiki matematycznej” [On the
Significance and Needs of Mathematical Logic], where he mentioned establishing a specialized logic journal
among the most urgent needs of contemporary Polish logic. Łukasiewicz was aware of the significant role
that the journals Przegląd Filozoficzny [Philosophical Review] (founded in 1897) and Ruch Filozoficzny
[Philosophical Movement] (founded in 1911) had played in the development of Polish philosophy, as well as
the role that Fundamenta Mathematicae (founded in 1920), had begun to play in the world mathematics.
He believed that the logical milieu that had already been established in Warsaw, was ready to issue an
international journal that would provide the possibility of exchanging the results and new impulses for further
developments in this domain. Thus, it is known that since the late 1920s, Łukasiewicz and his collaborators
had been making efforts to establish a purely logical periodicals. These ideas took two forms. In 1934, the
first volume of Studia Logica was published – conceived as a series of monographs written by collaborators of
the Łukasiewicz’s Seminar. Three years later, preparations began for publishing a regular multilingual journal,
Collectanea Logica. The first volume of this journal was already ready in the printing house at the end of
August 1939. Unfortunately, the entire edition burned down during the bombing of Warsaw by the Luftwaffe.
Only copies of individual articles survived, handed over to the authors. The idea of founding a purely logical
journal was revived by Kazimierz Ajdukiewicz only in 1953, nearly twenty years after Łukasiewicz’s first trials.
Ajdukiewicz gave it the title “Studia Logica”; the journal referred in its title to the title of Łukasiewicz’s series
of monographs, but in its content to Łukasiewicz’s Collectanea Logica. In the presentation, we will discuss
the fate of the first issue of the journal Studia Logica against the backdrop of the richness of Polish scientific
life in the interwar period, when Warsaw, with its two chairs of mathematical logic and a genuine school
logic, could rightly be called the World’s Capital of Logic.
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Propositional Dynamic Logic (re)visited

Yde Venema 11:00–12:00

Institute for Logic, Language and Computation

Propositional dynamic logic (PDL) is a well-known modal logic stemming from the wave of so-called process
logics that emerged in the 1970s. Characteristic to PDL is that its collection of modalities is given as the
set of regular expressions over some set of atomic programs and (possibly) so-called test program. The
main results on PDL, such as a sound and complete axiomatisation and the decidability and computational
complexity of its satisfiability problem, were obtained relatively soon after its introducton. In the talk I
will review some results on PDL that have been obtained or re-evaluated in the past decade. Topics to
be discussed include its relation with other fixpoint logics, expressive completeness results, cut-free proof
systems, and interpolation properties.
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Profinite Heyting algebras

Guram Bezhanishvili1, Nick Bezhanishvili2, Tommaso Moraschini3,

Michał Stronkowski4 14:00–15:00

1Department of Mathematical Sciences, New Mexico State University
2Institute for Logic, Language and Computation, University of Amsterdam
3Department of Philosophy, University of Barcelona
4Faculty of Mathematics and Information Science, Warsaw University of Technology

Profinite structures appear in various parts of mathematics and computer science, e.g., in Galois theory,
algebraic number theory, and formal language theory. We investigate profinite algebras in the context of
algebraic logic, to be more precise, profinite Heyting algebras. Let us recall that intermediate (propositional)
logics are logics placed between classical and intuitionistic logics. They are in one-to-one correspondence with
nontrivial varieties of Heyting algebras. A corresponding variety of Heyting algebras constitutes an algebraic
semantics for a given intermediate logic.

An algebra is profinite if it is an inverse limit of an inverse system of finite algebras. In particular, it is a
topological algebra and its topology is compact, Hausdorff, and totally disconnected. An important case
appears when a profinite algebra Â is an inverse system of finite homomorphic images of a particular algebra
A. In such a case, we say that Â is a profinite completion of A. There are many well-known examples of
profinite algebras which are not profinite completions. However, finding such a Heyting algebra occurred
to be a challenging problem posed by Bezhanishvili and Morandi in 2009 [2]. We present a solution to this
problem in the following strong form.

Theorem 1 ([1]). Let V be a variety of Heyting algebras. The profinite members of V are profinite completions
if and only if the Heyting algebras depicted below do not belong to V.

The main tool in the proof is Esakia duality between Heyting algebras and Esakia spaces. This allow us to
present a connection of our work with Esakia’s representation problem: which ordered sets are order-reducts
of Esakia spaces. (This is a variant of the classical Grätzer’s and Kaplansky’s problem which asks, in modern
terminology, which ordered sets are order-reducts of Priestley spaces.)

References.

[1] Guram Bezhanishvili, Nick Bezhanishvili, Tommaso Moraschini, and Michał Stronkowski. Profiniteness and
representability of spectra of Heyting algebras. Adv. Math., 391:47, 2021. Id/No 107959.

[2] Guram Bezhanishvili and Patrick J. Morandi. Profinite Heyting algebras and profinite completions of Heyting
algebras. Georgian Math. J., 16(1):29–47, 2009.
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Bounds Consequence and Liberalizing Semantic Values

Thomas Ferguson 15:30–16:30

Rensselaer Polytechnic Institute

Bounds consequence (introduced by Greg Restall and defended by David Ripley) provides a reading of logical
consequence in which a sequent is understood as a position in which an agent accepts (or asserts) all formulae
in the antecedent and rejects (or denies) all formulae in the succedent. Provability of a sequent is then
understood as a certificate that for an agent to take that position has landed “out-of-bounds” in some sense.
Its introduction has provided an opportunity to recast a number of a priori pragmatic phenomena governing
our conversational norms as authentically semantic, including features like topicality, confidentiality, and
justification. In this talk I will present work (joint with Jitka Kadlecikova) in which even conversational
aspects like concern for one’s interlocutor can be understood as guiding the determination of these bounds
and can receive a semantic representation in model theory.
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Wednesday 19th

A modular bisimulation characterisation for fragments of hybrid logic

G. Badia1, D. Gaina2, A. Knapp3, T. Kowalski4, M. Wirsing5 9:00–10:00

1U. of Queensland
2Kyushu U.
3U. of Augsburg
4UJ
5U. Munich

There are known characterisations of several fragments of hybrid logic by means of invariance under bisimu-
lations of some kind. The fragments include {↓,@} with or without nominals (Areces, Blackburn, Marx),
@ with or without nominals (ten Cate), and ↓ without nominals (Hodkinson, Tahiri). Some pairs of these
characterisations, however, are incompatible with one another. For other fragments of hybrid logic no such
characterisations were known so far. We prove a generic bisimulation characterisation theorem for all standard
fragments of hybrid logic, in particular for the case with ↓ and nominals, left open by Hodkinson and Tahiri.
Our characterisation is built on a common base and for each feature extension adds a specific condition, so it
is modular in an engineering sense.
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Canonical extension of lattices

Mai Gehrke 10:30–11:30

Université Cote d’Azur

Canonical or perfect extensions of ordered algebras originate with the seminal work of Jónsson and Tarski
on Boolean Algebras with Operators published in 1951-52. Since then the notion has been generalized to
encompass arbitrary additional operations and more general underlying order structures. Canonical extensions
are closely related to topological dualities for these algebraic structures and provide a powerful abstract
setting in which to study duality and relational semantics. This talk provides a survey, mainly focused on
the setting of bounded lattices with additional operations, and reflects the content of an upcoming research
monograph co-authored with Wesley Fussner.
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Poset Products and Strict Implication

Wesley Fussner1, Peter Jipsen2 11:30–12:00

1Institute of Computer Science of the Czech Academy of Sciences
2Chapman University

Poset products were introduced by Jipsen and Montagna in order to give representation theorems for several
classes of residuated lattices, notably GBL-algebras. In this work, we discuss poset products as a formalism
for realizing various substructural logics as logics whose implication connective is a strict implication. Our
work rests on new results on which residuated lattices may be isomorphically respresented as poset products
of appropriately chosen algebras. In particular, we generalize the well-known result that states that Heyting
algebras of up-sets (of some poset) are exactly the perfect Heyting algebras.
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On norms defined on sequentially composed actions

Piotr Kulicki 11:30–12:00

John Paul II Catholic University of Lublin

This work provides a formal exposition of sequentially composed actions, enhancing deontic action logic
with novel perspectives and complexities. It is grounded in an algebraic framework that accounts for both
successful and failed enactments of actions, as initially presented in [4]. On this basis, we delineate two
separate frameworks of obligation concerning sequentially composed actions. The first framework adheres to
local norms that govern one-step actions, reflecting the model discussed in [4]. The second framework evaluates
the results of entire action sequences in the context of an agent’s objectives, paralleling the methodology in
[1] and inspired by Andersonian-Kangerian reduction strategies, exemplified in [7]. This exploration broadens
previous research on the deontic properties of actions and states, as explored in [5, 6], specifically focusing on
sequentially composed actions. Local norms underpin action-based obligations, while goal-oriented norms
align with state-based obligations.

For norms based on local contexts, we apply the Standard Deontic Logic model for clarity and brevity,
as noted in [7]. Hence, norms that govern single-step actions are established based on prohibitions. An
action is considered permissible if it is not explicitly prohibited, and obligatory if the failure to perform it is
prohibited. On this premise, we define norms for sequentially composed actions as proposed in [4]. Essentially,
a composed action is prohibited if any of its individual steps are locally prohibited, it is permissible if each
step is individually permissible, and it is obligatory if every constituent step is obligatory and the sequence is
defined in such a way that it can be successfully completed regardless the choices of its executor.

Regarding norms oriented towards goals, the primary concept is that in every situation an agent faces, there
are optimal states the agent ought to aim for. Norms for sequentially composed actions are then derived based
on whether these optimal states are achieved or not. We examine several ways of establishing obligations as
preliminarly sketched in [2]. To complete the formal system we consider the interplay between local norms
and goal-oriented norms.

In a recent paper [3] Ju & Nygren made another attempt to formalize the normative properties of sequential
actions was made. The main idea there is to analyse current behaviour of an agent in the context of their
past actions. As a conclusion of this presentation we will compare selected outcomes of our approach with
those of Ju & Nygren’s.

References.

[1] Janusz Czelakowski. Deontology of compound actions. Studia Logica, 108(1):5–47, 2020.

[2] Fengkui Ju and Piotr Kulicki. Actions and Deontology: Janusz Czelakowski on Actions and Their Assessment.
In Jacek Malinowski and Rafał Palczewski, editors, Janusz Czelakowski on Logical Consequence, pages 265–286.
Springer Verlag, 2024.

[3] Fengkui Ju and Karl Nygren. Normative properties of sequential actions. In Juliano Maranhão, Clayton Peterson,
Christian Straßer, and Leendert van der Torre, editors, Deontic Logic and Normative Systems - 16th International
Conference, DEON 2023, Trois-Rivières, QC, Canada, July 5-7, 2023, pages 139–157. College Publications, 2023.

[4] Piotr Kulicki and Robert Trypuz. Completely and partially executable sequences of actions in deontic context.
Synthese, 192(4):1117–1138, 2015.

[5] Piotr Kulicki and Robert Trypuz. Connecting actions and states in deontic logic. Studia Logica, 105(5):915–942,
2017.

[6] Piotr Kulicki, Robert Trypuz, Robert Craven, and Marek J. Sergot. A unified logical framework for reasoning
about deontic properties of actions and states. Logic and Logical Philosophy, 32(4):583–617, 2023.

[7] Paul McNamara and Frederik Van De Putte. Deontic logic. In Edward N. Zalta and Uri Nodelman, editors, The
Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, fall 2022 edition, 2022.
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Punctual presentability of injective structures and trees

Michał Wrocławski 14:00–14:30

University of Warsaw, Faculty of Philosophy

This presentation is based on joint research with Nikolay Bazhenov, Ivan Georgiev, Dariusz Kalociński, Luca
San Mauro, and Stefan Vatev (in alphabetical order). A similar talk has been accepted for presentation at
Logic Colloquium 2024. Together with D. Kalociński and L. San Mauro we also intend to send a related
article to the 49th International Symposium on Mathematical Foundations of Computer Science (to be
presented at the conference and included in its proceedings).

Punctual structure theory considers structures whose domain is N and all relations and functions from their
signature are uniformly primitive recursive.

In [1] it has been proved that every computable structure of each of the following classes has a punctual
presentation: equivalence structures, linear orderings, Boolean algebras and some more. On the other hand,
among others, computable torsion abelian groups do not always have a punctual presentation.

We have considered a similar question with respect to other types of structures, in particular to structures
of the form (N, f) where f is a unary injective function (which we call injective structures). An injective
function can be decomposed into various orbits, each of which is either a cycle, or constitutes an N-chain or a
Z-chain. A function which can be decomposed into cycles only is called a cyclic function.

We have shown that every computable injective structure which is not cyclic is punctually presentable. So is
every computable injective structure which has some cycle length occurring infinitely many times.

When none of these cases occurs, the situation is less clear. We have constructed a computable cyclic injective
structure without a punctual presentation. We have also considered the following concept. Suppose that
f is a cyclic function and that g : N → N is an enumeration of all cycle lengths of f in which each cycle
length is repeated as many times as it appears in f . We have proved several charaterizations tying punctual
presentability of (N, f) to computational properties of g.

We have also had success in proving some cases of a theorem which states a connection between instrinsic
punctuality of an additional relation on a punctual injective structure and definability of that relation using
a certain restricted class of quantifier-free formulas of first-order logic, assuming that a certain effectivness
condition is satisfied. This is aimed to lead to a more general punctual version of Ash-Nerode Theorem.

In addition to injective structures, we have also considered trees interpreted as either (predecessor) functions
or as relations. We have shown that while every computable tree as a relation has a punctual presentations,
the situation is different when trees as functions are considered.

References.

[1] Iskander Kalimullin, Alexander Melnikov, Keng Meng Ng, Theoretical Computer Science, pp. 73–98, Algebraic
structures computable without delay, volume 674, 2017.
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Logicality and Determinacy

Sebastian G.W. Speitel 14:00–14:30

University of Bonn

According to Tarski’s celebrated model-theoretic definition of logical consequence a sentence ϕ follows logically
from a class of sentences Γ if and only if every model of the sentences in Γ is also a model of the sentence ϕ
[12]. Explicating the notion of logical consequence for a wide range of logics, the definition relies on a prior
division of the expressions of the language of ϕ and Γ into logical and extra-logical: the logical constants of a
language directly influence the range of admissible models to take into account when assessing a claim of
consequence and thereby determine which arguments are logically valid.

Since logical consequence is assumed to be a formal relation, i.e., one that is not influenced by extraneous
‘empirical’ information, the choice of which expressions to count as logical is not arbitrary: it must be such as
to ensure that inferences licensed on the basis of that choice respect the constraint of formality. Determining
the right boundary between logical and non-logical constants is thus of crucial importance to the Tarskian
project of providing an adequate model-theoretic explication of the notion of logical consequence. If too
many, or inappropriate, expressions are classified as logical several ‘material’, non-formal transitions will,
wrongly, qualify as logical consequences; if too few expressions are taken to be logical the resulting relation of
logical consequence will be impoverished and not yield an adequate account for a given language. This is the
demarcation problem of the logical constants.

Although it is easy enough to provide a satisfactory division of expressions for common logical languages, such
classifications often proceed by means of uninformative enumerations. This unprincipled and case-by-case
determination contrasts sharply with the generality of the definition of logical consequence which applies
to all languages of a particular type indiscriminately. Tarski himself regarded the project of providing a
mathematically rigorous explication of the notion of logical consequence as unfinished until this crucial issue
could be addressed. What is needed to put the model-theoretic definition of logical consequence on a firm
philosophical foundation and shield it against skeptical attacks is, therefore, a criterion of logicality, a set of
mathematically precise and philosophically informative principles which delineate, for the kinds of languages
covered by Tarski’s definition, the appropriate class of logical constants.

In the tradition of devising criteria to solve the demarcation problem of the logical constants invariance-based
approaches hold a prominent place ([13], [11], [7], [1]). These criteria ground the formality of logical inferences
in properties of the model-theoretic denotations of purported logical constants. Despite oftentimes regarded
as a necessary component of delineating the logical expressions of a language, purely invariance-based criteria
appear to face issues they are, by their very design, unable to overcome. This is due to the fact that criteria of
this sort, for the most part, only address the semantic question of what constitutes a logical denotation while
neglecting the attendant meta-semantic question of how logical constants come to denote such denotations. A
theory of logical inference as safe and reliable transition between premisses and conclusions ought to address
both questions, however.

In this talk, I will present, motivate and defend a criterion of logicality which supplements invariance-based
constraints with inferentialist requirements on the determination of meaning and explore its scope and some
of its consequences. Central to the proposed criterion is a combination of insights from two traditions in the
philosophy of logic and language which, together, address both the semantic and meta-semantic question:
from the model-theoretic tradition it adopts the idea that the formality of logical consequence is grounded
in properties of the denotation of logical expressions, best captured by an invariance constraint. From the
inferentialist tradition it takes up the insight that the meaning of a logical expression should be recoverable
from its inferential behaviour, that its meaning should be uniquely determined by its inferential role. This is
operationalized by means of a categoricity-requirement. The resulting criterion demands that for an expression
to be logical the inferential and model-theoretic aspects of its meaning must cohere in such a way that its
inferential behaviour (codified by a consequence relation) uniquely determines one among its consistent,
formal – i.e., (isomorphism-)invariant, – model-theoretic values. The criterion was developed in joint work
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with D. Bonnay (see [2]).

The prospects of a combined criterion of the kind outlined above is seriously threatened by a set of underde-
termination phenomena, sometimes referred to as Carnap’s (categoricity) problem in reference to Carnap’s
discovery in [6] that the classical single-conclusion rules of the usual constants of FOL underdetermine their
standard model-theoretic interpretations. This problem draws attention to the fact that the inferential
behaviour of most constants in most logical systems is consistent with a variety of model-theoretic interpre-
tations. As a result, the model-theoretic interpretations of these notions remain underdetermined by their
inferential roles. While Carnap’s Problem has received renewed interest in the last couple of years ([10], [9],
[4], [14]) investigations into its scope and extent for expressions from the category of generalized quantifiers
are still in its infancy. In this talk, I want to outline a general framework for investigating the question of
determinacy for generalized quantifiers and present and discuss some initial results.

In a recent paper, Bonnay & Westerståhl [3] showed that the standard consequence relation of FOL indeed
determines the standard interpretations of the universal and existential quantifier as long as the demand that
quantifiers be permutation-invariant is met. In the class of type 〈1〉 quantifiers the ability to be uniquely
determined by a first-order consequence relation extends beyond the notions of FOL. In fact, the quantifiers

(i) Q0(M) = {A ⊆M | ℵ0 ≤ |A|}

(ii) Qfin(M) = {A ⊆M | |A| < ℵ0}

are uniquely determinable by their respective consequence relations. That they are is the consequence of a
more general result according to which all EC∆-definable notions are uniquely determinable by consequence
relations in a canonical way, and the fact that unique determination is preserved under taking complements (a
fact first observed by D. Westerståhl). On the other hand, despite its logic allowing a complete and recursive
axiomatization [8], the quantifier

(iii) Q1(M) = {A ⊆M | ℵ1 ≤ |A|}

is not uniquely determinable by any consequence relation over its language. This indeterminacy continues to
persist into cardinalities higher than ℵ1.

If there is time, I would like to discuss (some of) the philosophical consequences of these results further.
For, on the one hand, the difference between the unique determinability of Q0 in the context of a first-order
language as against the failure of unique determinability of Q1, despite the latter’s complete logic, throws
doubt on the idea that completeness of a logical system is a necessary condition for a ‘full understanding’
or ‘complete grasp’ of its notions. This, on the other hand, has interesting implications for a debate in
the philosophy of mathematics: it is well-known that the natural number structure can be categorically
characterized in the language of FOL extended by the quantifier ‘there are (in)finitely many’. The above
then provides a way to defend the use of this formalism for achieving determinate reference to the natural
number structure against the ‘model-theoretic skeptic’ in the philosophy of mathematics (see, e.g., [5]) who
doubts our ability to achieve, in a naturalistically acceptable fashion, such reference.

This talk is based on joint work with D. Bonnay and discusses material previously published ([2]) and
submitted for publication.
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We give a new construction of free distributive p-algebras. Our construction relies on a detailed description
of completely meet-irreducible congruences, so it is purely universal algebraic. It yields a normal form
theorem for p-algebra terms, simpler proofs of several existing results, as well as a complete characterisation
of structurally complete varieties of p-algebras.
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Sequent Calculi for Two non-Fregean Theories
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The aim of the talk is to present Sequent Calculi for two non-Fregean theories: WT—a topological Boolean
extension of SCI (Sentential Calculus with Identity), the weakest non-Fregean logic proposed by Roman
Suszko [2], and WH—an axiomatic extension of WT consisting of formulas tautological in Henle algebras.
Non-Fregean theories were introduced as a formalization of ontology of Wittgenstein’s Tractatus [4], which
was intertwined with the abolition of the (so called) Fregean Axiom [2]. Fregean Axiom can be formulated as
follows:

(φ↔ χ)→ (φ ≡ χ)

which states that identity can be identified with classical equivalence, or that semantic correlates of sentences
are synonymous with their truth values. Suszko disagreed with this assumption and, instead, following
Wittgenstein’s ontology, introduced the concept of a situation as the denotation of a sentence. This particular
idea has been formalized through the introduction of the binary identity connective “≡”, which is stronger
than classical equivalence “↔” and which expresses that situations denoted by two analyzed sentences are
identical. The two non-Fregean logics examined in the talk are two of three main extensions of SCI (the
other one being WB) examined by Suszko in Abolition of the Fregean Axiom [2]. Moreover, proof theory
for non-Fregean logics has been a subject of examination before, but it was mostly focused on SCI and its
intuitionistic version, ISCI; the examination of axiomatic extensions of SCI in structural proof theory realm
provides a new insight into the topic of formalizing non-Fregean proof systems.

WT is obtained from WB, a Boolean extension of SCI, through addition of four axioms extending the properties
of identity connective. As a result the identity is weaker and the overall logic is stronger, but the resulting
identity connective is still separate from classical equivalence. WT’s philosophical foundations lay in the
following proposition from Tractatus:

5.141 If p follows from q and q from p then they are one and the same proposition.

which can be interpreted as the fact that two logically equivalent sentences constitute different variants of the
same sentence. WT is closed under both the Gödel rule and the quasi-Fregean rule, that is

φ↔ χ

φ ≡ χ

WT consists of more tautological identities than SCI and WB, where in the case of SCI the only tautological
equation is the trivial one of the form φ ≡ φ and within WB the tautological equations φ ≡ χ must come
from classically provable equivalences χ↔ χ. In the case of WT, φ ≡ χ is a tautology if and only if φ↔ χ
is a tautology of SCI. To formalize this notion we introduce proof system G3WT (based on a version of the
original system `G3SCI found in [1]), in which we add one right-sided identity-dedicated rule

Γ≡ ⇒ φ← χ

Γ≡ ⇒ φ ≡ χ RT≡

in which Γ≡ consists of equations only. This particular restriction is motivated by the need to prevent the
possibility of proving the so-called Fregean Axiom. The resulting system is complete and sound. We will
discuss correctness and invertibility of the proposed rule set and identify issues regarding the cut elimination
procedure.

WH, an axiomatic extension of WT, differs from WT in the addition of one supplementary identity-dedicated
axiom (although it is possible to use the axiomatization of WB as the base—if it was the case, WH would be
obtained through the addition of four axioms characterizing identity). It is a formalization of the following
proposition from Tractatus:
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5.5303 Roughly speaking: to say of two things that they are identical is nonsense, and to say of
one thing that it is identical with itself is to say nothing.

which is often quoted to emphasize Wittgenstein’s aversion towards the sign of identity. In WH we can
state that a given situation is either necessary or impossible. This brings us closer to modal logic; WH
corresponds to S5, where � can be interpreted as interior operator “I”. We will briefly comment on this
particular correspondence and then we will introduce G3WH, sequent calculus obtained from G3WT through
the extending the set of identity-dedicated rules. The newly added rule is introduced through the utilization
of Negri’s strategy of turning axioms into sequent calculus rules. As a result we obtain the following rule:

Γ, (φ ≡ χ) ≡ > ⇒ ∆ Γ, (φ ≡ χ) ≡ ⊥ ⇒ ∆

Γ⇒ ∆
L5
≡

In the above rule we have two active formulae and no principal formula. Its general form is similar to cut;
when looking bottom-up, we introduce two possible scenarios in our derivation—a given equation φ ≡ χ can
be either necessary or impossible. The obtained system is complete and sound. Similarly as it was mentioned
for G3WT, we will discuss the correctness and invertibility of the obtained identity-dedicated rule as well as
discuss the issues connected to the cut elimination procedure.
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It is a well known fact, that the class of Abelian `-groups is a variety. It was established in [2] that even
as a quasivariety it is generated by the `-group of integers. In fact, it is known that, as a quasivariety, it
is generated by any of its nontrivial members, and therefore has no proper subvarieties, or in the language
of logic: Abelian logic has no consistent finitary extensions. It does, however, have consistent infinitary
extensions, i.e. extensions that can only be axiomatized by rules using ω-many variables. These extensions
are in one-to-one correspondence with generalized quasivarieties of Abelian `-groups.

Let us recall the definition of generalized quasivariety and generalized quasiequation.

Definition. A generalized L-quasiequation is an expression of the form∧
i<κ

ϕi ≈ ψi → ϕκ ≈ ψκ,

where ϕi ≈ ψi are L-equations for every i < κ, where κ is a countable cardinal number.

A class K of L-algebras is a generalized quasivariety if there exist a set of generalized quasiequations S such
that K satisfies all generalized quasiequations from S. It is determined by set of generalized quasiequations.

We denote the smallest quasivariety containing class of algebras K as GQ(K). For one element algebra A we
write GQ(A) instead of GQ({A}).

The first topic of this talk will be study of the generalized quasivariety generated by the `-group of real
numbers GQ(R). We will show that GQ(R) is also generated by all Archimedean `-groups. We will
axiomatize this generalized quasivariety using the ∨-version of Archimedean rule:

{ψ ∨ ξ ⇒ (n · ϕ) ∨ ξ | n ∈ N} I ϕ. (Arch∨)

In the rest of the talk, we will focus on generalized subquasivarieties of GQ(R). We will make first
steps towards describing GQ(Q) and GQ(Z ) and in particular we will show there are 22ω

generalized
subquasivarieties of GQ(R).
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Mechanical causation as relevant implication
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We present a system of logic aimed treating causation and deduction by the same means. We take deduction
steps to be transitions of finite automata, and we model causation by taking temporal steps, endowing both
notions by the same level of (physical) necessity that we attribute to the passing of time.
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From questions to proofs and back: on questions in proof systems
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The talk will provide an overview of the logic of questions in its intersection with proof theory. The general
aim is to describe how questions function in proof systems.

In the first part of my talk I will sketch a historical overview of the developments in the logic of questions that
are relevant to the topic1. I wish to pay special attention to what may be called the ‘Polish tradition’ in the
logic of questions: starting, say, with Kazimierz Ajdukiewicz ([1, 2]) and leading to Inferential Erotetic Logic
developed by Andrzej Wiśniewski ([14, 16]). The work of Tadeusz Kubiński ([9, 10, 11])—barely known, for
historical reasons, in the Western tradition—is of great importance in this context.

In the second part I shall focus on proof systems including questions that are being developed today. These
includes (though are not limited to) natural deduction systems defined in the framework of Inquisitive
Semantics ([3, 4]) and the method of Socratic proofs defined in Inferential Erotetic Logic ([15, 16, 12, 13]).
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In the overwhelming majority of contributions to multi-agent epistemic, doxastic, and coalition logic, a group
is reduced to its extension, i.e., the set of its members. Membership in groups is assumed to be common
knowledge among all agents. This has a counter-intuitive consequence that groups change identity when their
membership changes, and rules out uncertainty regarding who is a member of a given group. Additionally,
this idealization does not reflect the structure of groups, or the structured way in which collective epistemic
attitudes emerge, in the intended application of logical models. Epistemic logics of intensional groups lift the
extensionality assumptions above, by seeing groups as given to us intensionally by a common property that
may change its extension from world to world. We will outline an abstract framework replacing agent or group
labels of epistemic modalities with names, and providing them with an algebraic structure relevant to types
of collective epistemic attitudes in question. The resulting formalisms are essentially two-sorted, combining
the language of labels of modalities and the language of epistemic statements. (The talk is grounded in
on-going joint work with Zoé Christoff, Olivier Roy, and Igor Sedlár.)

One of the usual assumptions of multi-agent epistemic logic is that groups of agents are given extensionally
as sets of agents, membership in groups is common knowledge among all agents, and change in membership
implies change of identity of a group. This is not how we usually think of groups. We are commonly
reasoning in various contexts without knowing groups’ extensions—we might routinely refer to groups such
as “bot accounts”, “democrats”, or “correct processes”—and we do not settle for reducing groups to their
extensions either, as clearly they can change across the state space of a system, or possible states of the
world. Epistemic logics of intensional groups lift the assumptions above, by seeing groups as given to us
intensionally by a common property that may change its extension from world to world. In their seminal
work [5, 4], Grove and Halpern introduced a multi-agent epistemic logic where groups are labeled by abstract
names whose extensions can vary from world to world. The language contains two types of modalities: Enϕ
means that “everyone named n knows that ϕ ”, and Snϕ means that “someone named n knows that ϕ ”.
They further consider a natural extension of the basic framework where names are replaced by formulas
expressing structured group-defining concepts. Motivated mainly by applications such as dynamic networks
of processes, another framework where the agent set can vary from state to state, have been developed in a
form of term-modal logic. Introduced by [3], it builds upon first order logic, indexing modalities by terms
that can be quantified over. Epistemic logic with names of [5] was in a sense seminal to the development of
term-modal logic, and can be seen as its simple decidable fragment (a closely related language of implicitly
quantified modal logic was studied in [7]).

Grove and Halpern’s work is enjoying a recent resurgence of interest in the epistemic logic community: in
[1], we considered expansions with non-rigid versions of common and distributed knowledge; Humml and
Schröder [6] generalize Grove and Halpern’s approach to structured names represented by formulas defining
group membership, including e.g. formulas of the description logic ALC. Their abstract-group epistemic
logic (AGEL) contains a common knowledge modality as the only modality and, unlike in [1, 5], their group
names are rigid. In [2], we adopted the perspective that both “everyone labeled a knows” and “someone
labeled a knows” modalities form a minimal epistemic language for group knowledge where groups are
understood intensionally, and that their labels reflect their structured nature. We used languages built on
top of classical propositional language containing modalities [a], 〈a] indexed by elements of an algebra of a
given signature of interest, we set up a general relational semantics involving an algebra of group labels to
index (sets of) relations in each world, shown how some related logics can be modelled in such a way, and
proven completeness of the minimal logic.

A fully abstract account of such epistemic logics can be given, linking two-sorted algebras (involving
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propositions and group labels/types of knowledge) with monotone neighborhood frame semantics, in terms
of an algebraic duality. This can further be applied to obtain, e.g., a definability theorem or to design
a multi-type proof theory for the basic logic. We further discuss several particular examples of algebraic
signatures giving rise to interesting and useful variants of group knowledge, like distributed or common
knowledge.
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Belnap-Dunn semantics include two extra values, “both” and “neither”, in addition to the classical “true” and
“false”. This semantic context allows for a wider characterization of the concepts of truth and falsity. [4]
studies all the logical consequences that can be defined upon these new characterizations providing semantic
and tableau analysis for all of them. This paper extends Wintein’s work by providing the corresponding
semantic and tableau analysis of metainferences for these Strong Kleene Generalizations of Classical Logic.

Our semantics includes four truth-values, t, b, n and f , informally standing for ‘true’, ‘both true and false’,
‘neither true nor false’ and ‘false’, respectively. In this context, each one of the concepts of truth and non-falsity
split into exact and regular. Exact truth refers to value t, while regular truth means taking a value in {t, b},
and similarly for falsity. Following Wintein, we will use the tags t, 1, 0̂, f̂ for exact truth, regular truth, regular
non-falsity and exact non-falsity, respectively. The four notions of truth and non-falsity lead, this way, to
sixteen instantiations of (GS). Wintein classifies these instances into four “exact” ones, four “regular” ones
and the remaining ones as “mixed”.

Now, let L be a propositional language including the classical connectives: ∧, ∨, ⊃ and ¬. Our set of four
truth-values Val forms a lattice as shown in Fig. 0.1.

t

b n

f
Figure 0.1: Belnap-Dunn four-element lattice

The notions of satisfaction or “standards” (see [1] and [2]) are the upsets of Val, and the “antistandards” are
the downsets of Val, i.e. the complements of an upset of Val.

Table 0.1: Standards and antistandards for Val.

Standards Antistandards
t = {t} t̂ = {f, n, b}
1 = {t, b} 1̂ = {f, n}
0̂ = {t, n} 0 = {f, b}
f̂ = {t, n, b} f = {f}

A valuation v is an xy-counterexample to a sequent A⇒ B, written v 1xy A⇒ B, just in case v(A) ∈ x
and v(B) ∈ ŷ (otherwise, v satisfies the sequent). A sequent A⇒ B is xy-valid, written �xy A⇒ B, when
no valuation is an xy-counterexample to it.

Hence, xy-validity involves an upset (x) and a downset (ŷ) and a sequent A⇒ B is xy-valid exactly when no
valuation v sets both v(A) ∈ x and v(B) ∈ ŷ. A salient difference between the upsets and downsets of our
sixteen logics is whether they are exclusive and exhaustive with respect to the set of values. We will clarify
the relation between these properties and their non-reflexivity and local non-transitivity.
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We then develop our tableau system starting from the one used by [3] for FDE, and adapting it to Wintein’s
SK generalizations by selecting the appropriate tags for formulas in the initial list and a set of rules to
transform these tags into signed formulas. Hence, in order to check whether �xy A1, . . . An ⇒ B1 . . . Bm we
must write the initial list of a counterexample, and then work out standard x and antistandard ŷ into its
appropriate combination of signs, as shown in Fig. 0.2.

A, t A, 1 A, 0̂ A, f̂
A,+

¬A,−
A,+ ¬A,− A,+ ¬A,−

A, f A, 1̂ A, 0 A, t̂
¬A,+

A,−
A,− ¬A,+ ¬A,+ A,−

Figure 0.2: Signed formulae for upsets and downsets

We can then extend this method to metainferences, which are expressions of the form A ⇒ B V C ⇒ D,
where A⇒ B and C ⇒ D are sequents.

A valuation v is an xy-counterexample to a metainference A ⇒ B V C ⇒ D, written, v 1xy A ⇒
B V C ⇒ D, just in case v xy A ⇒ B and v 1xy C ⇒ D (v otherwise xy-satisfies the metainference).
A metainference A ⇒ B V C ⇒ D is xy-valid, �xy A ⇒ B V C ⇒ D, precisely if no valuation is a
counterexample to it.

Our strategy to apply the tree method to metainferences is by extending our initial lists with nodes of the
form A⇒ B, xy and A⇒ B, xy. The tree rules for this kind of nodes are as in Fig. 0.3.

A⇒ B, xy A⇒ B, xy

A, x̂ B, y
A, x
B, ŷ

Figure 0.3: Sequent arrow rules

The rules follow the conditions for xy-satisfaction and xy-counterexample for sequents. In order to decide
whether the metainference A⇒ B V C ⇒ D is xy-valid we write the initial list for a counterexample, with
the premiss sequents tagged with xy and the conclusion sequents with xy. We then apply the sequent rules
and afterwards the translation of standards into signed nodes.

We then show how to adapt soundness and completeness proofs to the new material, proving that our tableaux
system for all SK-generalizations is sound and complete with respect to valid metainferences in the four-valued
semantics of all SK generalizations.

We conclude with an intriguing dilemma. On the one hand, there seems to be a deep symmetry between the
non-reflexive and non-transitive consequence relations, something the local reading of metainference validity
reflects. That symmetry, however, cannot be accounted for under a global reading. On the other hand, some
of the logics are “swap” equivalents to each other, meaning that for any logic xy, its swap is the result of
substituting each 1 by 0̂ and each 0̂ by 1 in xy. At the level of valuations, this amounts to the fact that for a
given valuation v its bn-swap v† is the result of replacing all n’s by b’s and all b’s by n’s. Under an intuitive
reading of the consequence relations we consider, swap-logics should be equivalent, and in this case, it’s the
global reading of validity the one that provides the desired result, as these “swap” logics come apart under the
local reading.
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Semiassociative Lambek Calculus: Sequent systems and algebras
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Lambek Calculus (L), introduced by Lambek [2], is a significant substructural logic. It arises from the
omission of three standard structural rules: weakening, contraction, and permutation. The algebraic models
of L are termed residuated semigroups or L-algebras, and are defined as follows.

Definition 2. Let (M,⊗,(,›,≤) be a structure where (M,⊗) is a semigroup, (M,≤) is a poset, and the
following condition holds:

(RES) a⊗ b ≤ c ⇐⇒ b ≤ a( c ⇐⇒ a ≤ c› a

Then, (M,⊗,(,›,≤) is a residuated semigroup.

Operation ⊗ is called product and (,› are called its residuations. As noted, we assume the product is
associative. Dropping that assumption leads to the formation of a residuated groupoid or an NL-algebra.

Residuated groupoids are models of Nonassociative Lambek Calculus (NL) of Lambek [3]. It represents
another crucial substructural logic, often described as the pure logic of residuations because the product does
not require any properties.

Both of these logics have interesting properties and applications. They were meant to describe categorial
grammars. Associative variant would describe sentences as sequences of words (tokens) and nonassociative
variant would descibe sentences as syntactic trees.

It is common to add a multiplicative constant 1 to L and NL. In algebras, constant 1 is interpreted as a unit
for the product. In that way we obtain residuated monoid or residuated unital groupoid. In this paper we
distinct L, NL, L1 and NL1, where the latter two admit the constant. The multiplicative constant requires
different approach to sequents.

The crucial difference between L and NL (or L1 and NL1) is their complexity. The problem whether a sequent
is provable in L is an NP–complete problem (see Pentus [5]), while the same problem for NL can be solved in
polynomial time (see Buszkowski [1]). Moreover, if we consider the consequence relation, i.e. we admit finite
set of nonlogical axioms, L becomes undecidable while NL is still PTIME (see Buszkowski [1]). The same
remains true for variants with 1.

The undecidability of consequence relation of L is a great problem if we would like, for example, decide
whether a sentence in a lanugage is correct. Sentences usually appear as sequences, not trees. Hence, there is
a need for a new framework.

Uusatlu et al [7] introduced Skew Noncommutaive Multiplicative Intuitionistic Linear Logic (SkNMILL).
They started with the following definition by Street [6].

Definition 3 (cited from [7, 6]). A (left) skew monoidal closed category C is a category with a unit object I and
two functors ⊗ : C×C→ C and(: Cop×C→ C forming an adjunction −⊗B a B( − for all B, and three
natural transformations λ, ρ, α typed λA : I⊗A→ A, ρA : A→ A⊗I and αA,B,C : (A⊗B)⊗C → A⊗(B⊗C),
satisfying the following equations due to Mac Lane [4]:
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If we assume natural transformations λ, ρ and α are natural isomorphism, then we obtain monoidal closed
category ; see Mac Lane [4].

Monoidal closed categories are models for L1 with only one residuation and are category theory alternative
for (restricted) residuated monoids. Uusatlu et al [7] introduce logic for skew monoidal closed categories (i.e.
SkNMILL) and provide a sequent system.

The research questions one can state are the following: What are algebraic alternatives for skew variants?
How can we introduce second residuation? What is the relation between NL, L (NL1, L1) and their skew
version? All these questions will be answered in this paper.

In this paper we introduce Semiassociative Lambek Calculus (SL and SL1) which is an extension of SkNMILL
with the second residuation. We provide a sequent system for this logic, we prove completeness with algebraic
models and show a way to contruct them.

We not only add second residuation, but also additive connectives ∨ and ∧ just like Veltri and Wan [8].
Lambek Calculus with these connectives is often called Full Lambek Calculus (FL, FL1). In this paper we
consider FSL and FSL1. The additive connectives do not play a major role in proofs, so all the results remain
true for weaker logics – SL and SL1.

What are algebraic alternatives for skew variants?

Definition 4. Let (M,⊗,(,›,≤) be a structure such that (M,⊗) is a groupoid and (M,≤) is a poset and
the following conditions hold:

(L-ASS) (a⊗ b)⊗ c ≤ a⊗ (b⊗ c)
(RES) a⊗ b ≤ c ⇐⇒ b ≤ a( c ⇐⇒ a ≤ c› a

Then, (M,⊗,(,›,≤) is a residuated semiassociative groupoid or SL-algebra.

The structure (M,⊗,(,›, 1,≤) is a residuated semiassociative unital groupoid or SL1-algebra, if (M,⊗,(
,›,≤) is an SL-algebra and for all a ∈M we have:

1⊗ a = a = a⊗ 1

As we can see, the associativity is weakened to be only less or equal. One may consider:

(R-ASS) a⊗ (b⊗ c) ≤ (a⊗ b)⊗ c
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The structure obtained that way is definable in terms of SL-algebras (one need to define new ⊗ with reversed
arguments).

The SL-algebras are models of SL and SL1-algebras are models for SL1. To obtain models for FSL and FSL1,
we require ≤ to be lattice order and add meet and join as new operations (additive connectives).

How can we introduce second residuation?

Let V be an arbitrary set of propositional variables. We define the formulas:

F ::= V | 1 | F ⊗ F | F/F | F\F | F ∧ F | F ∨ F

A sequent is of the form σ | Γ⇒ C, where σ is a formula or is empty (denote: ε), Γ is a sequence of formulas
and C is a formula. From now on, by Greek capital letters we denote sequences of formulas, by Greek
lower-case letters we denote a formula or ε, by Latin capital letters we denote formulas (always nonempty);
Latin lower-case letters are reserved for propositional variables. The following rules are from Uusatlu et al [7]
and Veltri and Wan [8]:

(ax)
A | ε ⇒ A

A | Γ⇒ C
(pass)

ε |A,Γ⇒ C
A | B,Γ⇒ C

(⊗ ⇒)
A⊗B | Γ⇒ C

σ | Γ⇒ A ε | ∆⇒ B
(⇒ ⊗)

σ | Γ,∆⇒ A⊗B
ε |Γ⇒ B A | ∆⇒ C

(/⇒)
A/B | Γ,∆⇒ C

σ | Γ, B ⇒ A
(⇒ /)

σ | Γ⇒ A/B
σ|Γ⇒ A A|∆⇒ C

(s-cut)
σ|Γ,∆⇒ C

ε|Γ⇒ A σ|∆1, A,∆2 ⇒ C
(c-cut)

σ|∆1,Γ,∆1 ⇒ C
ε | Γ⇒ C

(1⇒)
1 | Γ⇒ C

(⇒ 1)
ε |ε⇒ 1

A|Γ⇒ C B | Γ⇒ C
(∨ ⇒)

A ∨B | Γ⇒ C

σ | Γ⇒ A

σ | Γ⇒ A ∨B
σ | Γ⇒ B

(⇒ ∨)
σ | Γ⇒ A ∨B

A|Γ⇒ C

A ∧B | Γ⇒ C

B|Γ⇒ C
(∧ ⇒)

A ∧B | Γ⇒ C

σ | Γ⇒ A σ | Γ⇒ B
(⇒ ∧)

σ | Γ⇒ A ∧B

And the following rule allows to introduce second residuation.

B|∆⇒ C σ | Γ⇒ A
(\ ⇒)

σ | Γ, A\B,∆⇒ C

A | Γ⇒ B
(⇒ \)

ε | Γ⇒ A\B

These rules collectively define the sequent system for FSL1. If we skip additive connectives and rules for
them, we obtain a sequent system for SL1.

A sequent system for FSL and SL requires a different approach. We do not admit the unit 1 in the language
and its rules. Also, we assume that σ | Γ⇒ C is a sequent, if at least one of σ,Γ is nonempty.

Definition 5. A valuation µ is a homomorphism from the free algebra of formulas into an FSL1-algebra.
The homomorphism is extended to the sequences of formulas inductively as follows:

µ(A1, A2, . . . , An) =


1, if n = 0,

µ(A1), if n = 1,

µ(A1, . . . , An−1)⊗ µ(An), otherwise

We say that the sequent σ | Γ⇒ C is valid if µ(σ,Γ) ≤ µ(C).

The definition of valuation for FSL–formulas assumes that the antecedent is nonempty, so 1 is redundant.

Theorem 6. FSL is sound and complete with respect to FSL-algebras and FSL1 is sound and complete with
FSL1-algebras.
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What is the relation between NL, L and SL?

It is clear that (F)NL is essentially weaker than (F)SL. Every (F)L-algebra is also (F)SL-algebra and it is
obvious that there are (F)NL-algebras which are not (F)L-algebras. Less obvious is the fact, that there exist
(F)SL-algebras which are not (F)L-algebras. Having weaker assumptions does not necessarly mean, that the
associativy cannot be derived from other assumptions. We show the way of constructing (F)SL-algebras from
ordered semiassociative unital groupoids and we construct a concrete example, where semiassociativity holds
while associativity not.

The same remains true for variants with 1 and the construction of algebras with a unit also is shown.
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Multi-relation Agassiz sums of algebras

Francesco Paoli 14:00–15:00

Department of Pedagogy, Psychology, Philosophy, Universita di Cagliari

Płonka sums are a powerful technique for the representation of algebras in regular varieties. However, certain
representations of algebras in irregular varieties — like Polin’s variety or the variety of pseudocomplemented
semilattices — bear striking similarities to Płonka sums, although they differ from them in some important
respects.

We aim at finding a convenient umbrella under which all these constructions, as well as other ones of a
similar kind, can be subsumed. We introduce a multi-relation variant of Grätzer and Sichler’s Agassiz
sums that encompasses Płonka sums as a specialcase. We prove that the above-mentioned representations
of Polin algebras and pseudocomplemented semilattices can be recast in terms of sums over appropriate
bi-relation Agassiz systems. Finally, we investigate the problem as to which identities are preserved by the
construction.
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Uniform Weak Kleene Logics
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2University of Turin, Italy

When working on a multiple-premise and multiple-conclusion setting, i.e. considering inferences between a
set of premises and a set of conclusions, in most logical systems the comma on the premise side matches the
behavior of the object language conjunction, whilst on the conclusion side it matches that of the disjunction.
Namely, an inference of the form Γ⇒ ∆ can simply be read as

∧
Γ⇒

∨
∆, where

∧
Γ is the conjunction of

all formulas in Γ and
∨

∆ is the disjunction of all formulas in ∆.

However, this is not the case for Paraconsistent Weak Kleene logic (PWK) nor for its paracomplete dual,
known simply as Weak Kleene logic Kw

3 ([4]).

Both logical systems, which we will call WK logics for short, have a three-valued semantics in which the
non-classical truth-value behaves in an “infectious” way, i.e. as an absorbing or zero element for all the
operations ([8]).

It’s easy to check that Simplification (φ ∧ ψ � φ (ψ)) is not valid in PWK, whereas φ, ψ �PWK φ (ψ).
And dually, Addition (φ (ψ) � φ ∨ ψ) isn’t valid in Kw

3 , while φ (ψ) �Kw
3
φ, ψ. This fact shows that the

metalinguistic comma alluded earlier doesn’t behave as the expected binary associative connective featured in
the language ([2]). This suggests that there are two distinct ways of conjoining (disjoining) formulae in WK
logics: one can either use conjunction (disjunction) or the comma to gather premises (conclusions) together
in PWK (Kw

3 ), resulting in a different set of validities in each case.

The peculiar behaviour of the WK connectives has been source of discussion in the literature, at least for two
reasons. First, operators as ∧WK and ∨WK invalidate inference rules usually regarded as constitutive of the
meaning of conjunction and disjunction (simplification and addition, respectively). Second, their peculiar
truth-conditions have lead many to call into question whether ∧WK and ∨WK can be called a conjunction
and a disjunction. For example, [3] calls the first a ‘disjunction in disguise’, whilst [9] conclude that the
second operator ‘is not disjunction’.

We believe there is another reason one could have for questioning the status of ∧WK and ∨WK as logical
connectives.

According to [7], logical constants serve to make explicit in the object language certain structural features of
the relation of logical consequence. In the author’s words:

When logical constants are introduced they serve, so to speak, as punctuation marks of the
object language, for some structural features of deductions. (p. 366)

Thus, operational rules are translation rules from the structural level to the object language via logical
operators. In this view, a constant can be considered logical only if it can be ultimately analyzed in structural
terms.

However, it seems that the conjunction of PWK and the disjunction of Kw
3 cannot be analyzed on a

structural level. The reason for this is that, as it has already been pointed out, the comma cannot represent
the behaviour of these operators.

Under this reading we are then left in the uncomfortable position according to which these connectives aren’t
logical constants.
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Therefore, our objective here is to find a solution to this problem, exploring a way of restoring the expected cor-
respondence between metalanguage and object language, namely between commas and conjunction/disjunction
in WK logics.

With this purpose we define two logical systems, which we will call uPWK and uKw
3 (uWK logics, which

stands for ‘uniform WK logics’), that are meant to achieve the harmony between meta and object language,
and turn out to be substructural: Left Weakening fails in uPWK, as does Right Weakening in uKw

3 .

To study these logics, we first redefine the logical consequence relation of WK logics, in order to change the
reading of the comma and to bunch together formulas in accordance with the WK truth-tables.

Definition 7 (uPWK-validity). Γ �uPWK ∆⇐⇒
∧

Γ �PWK

∨
∆

Definition 8 (uKw
3 -validity). Γ �uKw

3
∆⇐⇒

∧
Γ �WK

∨
∆

Then we characterize the logical consequence of both systems with respect to PWK and Kw
3 , in the following

way:

Theorem 9 (Characterization of �uPWK).

Γ �uPWK ∆ iff

{
(i) ∃∆′ ⊆ ∆, s. t. ∅ �PWK ∆′ or
(ii) Γ �PWK ∆ and V ar(Γ) ⊆ V ar(∆)

(0.1)

Theorem 10 (Characterization of uKw
3 ).

Γ �uKw
3

∆ iff

{
(i) ∃Γ′ ⊆ Γ, s. t. Γ′ �Kw

3
∅ or

(ii) Γ �Kw
3

∆ and V ar(∆) ⊆ V ar(Γ)
(0.2)

Additionally, we obtain sequent calculi for uWK logics. To achieve this, we first provide two new sequent
calculi for PWK and Kw

3 , named SPWK and SKw
3
. Contrary to the sequent calculi by [5], SPWK and SKw

3

do not make use of linguistic restrictions. Instead, they make use of impure rules, i.e. rules that govern
more than one connective. Moreover, these proof systems are two-sided, hence, contrary to the existing
three-sided sequent calculi by [2], not only look more familiar, but most importantly, do not rely on any
particular semantics. SPWK and SKw

3
(which can also be found in [6]) can be obtained by those in [2]

following the method by [1]. Their method guarantees that from sound and complete n-sided calculi one can
obtain equivalent two-sided calculi. This allows us to infer the soundness and completeness of SPWK and
SKw

3
from those of the calculi by [2].

Then we derive the sequent calculi for uPWK and uKw
3 from SPWK and SKw

3
, removing the unsound

Weakening rules, Left and Right Weakening respectively, and substituting both of them with two new rules
that restore a restricted form of weakening requiring some form of variable inclusion (left variable inclusion
in the first case, right variable inclusion in the second case).

In conclusion, the new logical systems investigated in this work can be seen as a way to take seriously the
problematic status of WK connectives and address it from a substructural point of view. Moreover, the
results presented open some new interesting questions. In fact, the same motivation that leads us to the study
of uWK logics as solutions to the puzzling mismatch between metalanguage and object language in WK
logics, points to a generalization of this strategy for other logics that share the same problem. In particular,
we believe that it is promising to extend the study of uniform-companions to the so called Pure Variable
Inclusion companions of Classical Logic, studied in [10].
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On the normal form of deductions in sequent calculus for intuitionistic logic

Ren-June Wang 15:30–16:00

Department of Philosophy, National Chung-Cheng University

Gentzen’s Hauptsatz, the cut elimination theorem, states that every classical and intuitionistic sequent
deduction can be turned into a deduction without a cut. This result and the normalization theorem for
natural deduction systems are the cornerstones of structural proof theory. But, in a sense, it is only a limited
result. Unlike the normalization theorem, which can be applied to proofs with assumptions, cut elimination
only can be applied to sequent deductions in which no assumption, or hypothetical sequent, is present. In this
paper, we will take the challenge to generalize the cut elimination theorem for intuitionistic sequent calculus.
Our overall goal is to show that every sequent deduction with or without assumptions can be turned into a
normal form in which cuts are organized in a certain way such that, among other things, every eliminable
cut is eliminated. As such, when our normalization procedure applies to deductions without assumptions,
it is a cut elimination procedure. This procedure will then differ from other cut elimination procedure in
many ways. It is a kind of bottom-up procedure, which first turns the lower part of a deduction with cuts
into its normal form. Furthermore, it is just like the normalization procedure for natural deduction systems,
composed of a series of simple reduction steps for the rearrangement of cuts. For example, the following is
one of these reductions:

Γ1 ⇒ A
A,A,Γ2 ⇒ ∆2

A,Γ2 ⇒ ∆2

Γ1,Γ2 ⇒ ∆2

 
Γ1 ⇒ A

Γ1 ⇒ A A,A,Γ2 ⇒ ∆2

A,Γ1,Γ2 ⇒ ∆2

Γ1,Γ1,Γ2 ⇒ ∆2

Γ1,Γ2 ⇒ ∆2

The deductions where a cut formula is the principal formula of a contraction—generally the most difficult
case that a cut elimination procedure needs to handle—will be directly addressed by this reduction in our
process.
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Friday 21st

When change describes time.
Five logics of change for temporal reductionists
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The dispute between A- and B-theorists has continued ever since McTaggart formulated his argument for the
unreality of time, in 1908. The paradigm of contemporary temporal logic allows Prior-like logics and their
modal relational semantics to be treated in a selected sense as A- and B- approaches to time. Interestingly, the
A/B opposition divides philosophers of time differently than the opposition between temporal reductionism
and absolutism. By temporal reductionism we mean the view that time is dependent on change, or more
precisely, that there is no passage of time unless there is any change. What we want to do here is to give a
formal frame for a few versions of this position. We will present five different modal logics with different
primitive A-operators describing dichotomic changes of different types: C read it changes whether, ∃C - it
may change whether ; ∀C - it must change whether, C̃ - otherwise it would change whether. We will interpret
the languages of our logics in B semantics with different types of succession relation respectively: linear,
cyclic, parallel, and branched. We will give complete axiomatizations for the logics we consider. Finally, we
will show an example of the application of one of the formulated logics. It will be extended to the two-sorted
theory of change, which is intended to describe a reductionist position according to which the occurrence of
changes induces a discrete, linear, and directed flow of time.
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A Logic of Probability Dynamics
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Building on the work of Hájek et al. [1, 2, 4], we introduce a version of (crisp) modal Łukasiewicz logic [3]
that is suitable for formalising reasoning about probability dynamics, i.e. processes that lead to a change in
the subjective probabilities that agents assign to events. In our model, such processes are modelled as state
transitions endowed with a semiring structure.

Probability and its dynamics

One of the central questions in applications of probability theory is the question of learning – how a rational
agent should update their subjective probability in the light of new information. There is a large amount of
literature devoted to the logical modeling of different types of probability updates, with much of the work
focusing on specific models of learning (e.g. Bayesian updating).

We present a more general model of probability updating based on the assumption that probability measures
change as a result of state transitions (or actions). The advantage of this approach is that actions (state
transitions) need not be (fully) specified in terms of the information received by an agent. In many cases,
such a specification is either impossible or difficult to obtain. Furthermore, our approach allows to represent
updates resulting from different types of learning methods or situations where the particular method is not
known. At the same time, our framework is flexible enough to capture particular methods of learning, e.g. the
situations in which a transition consists in receiving a particular piece of information (e.g. when a statement
is truthfully announced and the agent learns it with certainty).

Definition 11. Let X be a Boolean algebra and I a set of agents. A subjective probability measure on (I,X)
is a function µ : I ×X → [0, 1] such that

µi(1X) = 1 (M1 )
µi(x ∨ y) = µi(x) + µi(y) if x ∧ y = 0X (M2 )

Let MI(X) be the set of all subjective probability measures on (I,X).

Informally, X is a Boolean algebra of events and I a set of agents. The real number µi(x) expresses agent i’s
subjective assessment of likelihood (subjective probability) of the event x. Below we will refer to subjective
probability measures simply as probability measures.

Definition 12. Let K be a set of “atomic actions”. The set ActK of action expressions based on K is defined
using the following grammar:

α, β ::= a ∈ K | α;β | α ∪ β | 1K | 0K

The action α;β represents sequential composition of actions α and β (“do α and then do β”), action α ∪ β
represents non-deterministic choice between α and β (“do α or β”), 1K represents the trivial action (“do
nothing” or “wait”) and 0K represents “abort”. A natural interpretation of action expressions is in terms of
state transitions, or binary relations on a set of states:

Definition 13. A K-frame is a pair 〈S,R〉 where S is a non-empty set (“states”) and R is a function from
ActK to binary relations on S such that
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• R(α;β) = R(α) ◦R(β);

• R(α ∪ β) = R(α) ∪R(β);

• R(1K) is the identity relation on S;

• R(0K) is the empty set.

Note that actions may be non-deterministic: one may have R(α)st and R(α)su without t = u. In what
follows, we will usually write Act instead of ActK and Rα instead of R(α).

Definition 14. A dynamic probability measure on 〈S,R〉 is a probability measure on (S × I,X).

In a dynamic probability measure, a set of states S is given and a probability measure on (I,X) is specified
for each state in S. States s ∈ S represent the possible states of the environment and Rα represents the state
transitions associated with action α. The central idea captured by this framework is that probabilities can
change as a result of action: we may have Rαst and µs,i(x) 6= µt,i(x).

Łukasiewicz logic

Łukasiewicz logic is one of the three basic fuzzy logics designed to formalize reasoning with vague notions; see
[4].

Definition 15. Let N be a countable set of indices. The Łukasiewicz propositional language over N is LN ,
defined by the following grammar:

φ, ψ ::= Pj | 0 | ¬φ | φ⊕ ψ
for j ∈ N . We define 1 := ¬0, φ→ ψ := ¬φ⊕ ψ, φ	 ψ := ¬(φ→ ψ).

Definition 16. A Łukasiewicz model for LN is a function M : LN → [0, 1] such that M(0) = 0,M(¬φ) =
1−M(φ),M(φ⊕ ψ) = min(M(φ) +M(ψ), 1).

The set of all Łukasiewicz models for N is denoted as ŁN . A formula φ ∈ LN is a consequence of (or follows
from) a finite set Γ ⊆ LN over ŁN iff, for all M ∈ ŁN , if M(ψ) = 1 for all ψ ∈ Γ.

Recall that Łukasiewicz implication φ→ ψ may be seen as expressing a (vague) statement “The truth degree
of φ is not much higher that the truth degree of ψ”. Consequently, if M(φ) > M(ψ), then M(φ	 ψ) is the
difference between M(φ) and M(ψ). This will be crucial for expressing probability comparisons.

Our logic of probability dynamics builds on a modal extension of propositional Łukasiewicz logic based on
“crisp” relational frames; see [3, 5, 6]. In our setting, the set of modalities ActK is countably infinite and
structured (with operators ;, ∪ and constants 1K and 0K), but this difference is not significant in view of the
“reduction axioms” discussed below.

Definition 17. Let N be a countable set of indices and let K be a countable set of action letters. The
Łukasiewicz modal language over N and K is LN,K , defined by the following grammar:

φ, ψ ::= Pj | 0 | ¬φ | φ⊕ ψ | [α]φ

for j ∈ N and α ∈ ActK (see Section ). We define the other Łukasiewicz operators as above. Moreover, we
define 〈α〉φ := ¬[α]¬φ.

Definition 18. A modal Łukasiewicz model for N and K is a triple M = 〈S,R, V 〉 where 〈S,R〉 is a K-frame
and V : LN,K × S → [0, 1] such that, for all s ∈ S,

V (0, s) = 0 V (φ⊕ ψ, s) = min(V (φ, s) + V (ψ, s), 1)

V (¬φ, s) = 1− V (φ, s) V ([α]φ, s) = min{V (φ, t) | Rαst}

A pointed model is a pair (M, s). A formula φ is satisfied in a pointed model (M, s) iff V (φ, s) = 1 in M
(notation: (M, s) |= φ). A formula φ is valid in a model M iff V (φ, s) = 1 in all s in M (notation: M |= φ.
The class of all modal Łukasiewicz models for N,K will be denoted as KŁN . Let K ⊆ KŁ. A formula φ
is valid in K iff it is valid in all models in K. For arbitrary finite Γ ∪ {φ} ⊆ LK,N , we say that φ is a local
consequence of Γ over K ⊆ KŁ iff (M, s) |= Γ only if (M, s) |= φ, for all M ∈ K and all s in M (notation:
Γ �K φ).
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Probability in Łukasiewicz logic

We show that Łukasiewicz logic can be used to formalize reasoning about probability. First we recall the
propositional logic FP(Ł) discussed in [4] and then we introduce FP(KŁ), a modal extension of FP(Ł).

In contrast to the presentation of the logic FP(Ł) in [4], the formulas of our language will contain agent
indices, but this is not a substantial modification. Hájek construes FP(Ł) as a “two-layered” logic in which a
modal operator “it is probable that” is applied to Boolean formulas only (the first layer) and the resulting
formulas are then combined using the connectives of Ł (the second layer). In our presentation, this modal
perspective is replaced by an equivalent one in which the set of propositional variables is indexed by I × Tm,
where Tm is a set of Boolean algebra terms over a fixed countable set of variables. We also use a more
abstract semantics for the language which is more convenient to work with and which is equivalent to Hájek’s
semantics.

Definition 19. The probability language PL is LI×Tm.

Similarly as in [4], formulas P(i,e), usually written as Pie, are read as “e is probable according to i”.

Definition 20. A Łukasiewicz model M is an FP(Ł)-model iff the following formulas are valid in M :

Pi(e)↔ Pi(f) if e ≡ f (F0 )
Pi(>)↔ 1 (F1 )

Pi(e ∨ f)↔ (Pi(e)⊕ Pi(f)) if e ∧ f ≡ ⊥ (F2 )

The conjunction of these formulas will be denoted as FP, the set of all FP(Ł)-models as FP(Ł).

Now we introduce the modal logic of probability dynamics FP(KŁ), which is a combination of FP(Ł) and
KŁ.

Definition 21. The language PLK is LI×Tm,K .

Definition 22. A KŁI×Tm-model M is an FP(KŁ)-model iff M |= FP. The set of all FP(KŁ)-models is
denoted as FP(KŁ).

It follows from the definition that in FP(KŁ)-models, every Vs is an FP(Ł)-model.

Recall that Vs([α]φ) is the minimum of the truth degrees of formula φ is states accessible from s using
action α. Dually, Vs(〈α〉φ) is the maximum. Hence, the truth degree of [α]Pie in a given pointed model
expresses the minimal possible probability of e (according to i) after the execution of action α. Similarly,
〈α〉Pie expresses the maximal possible probability of e (for i) after α.

Several other examples of formalization will be discussed.

Decidability and completeness

Our main technical results are decidability of local consequence over FP(KŁ) and a sound and complete
axiomatization of the set of formulas valid in FP(KŁ).

Theorem 23. For arbitrary finite Γ ∪ {φ} ⊆ PLK , it is decidable whether Γ �FP(KŁ) φ.

The theorem is proved by establishing a reduction of local consequence over FP(KŁ) to local consequence
over KŁ, which is known to be decidable [5].

Theorem 24. A formula φ ∈ PLK is valid in FP(KŁ) iff it is a theorem of the axiom system FP(KŁ),
consisting of the following axiom schemata:
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(i) axioms of Łukasiewicz propositional logic;

(ii) distribution axioms:

[α](φ→ ψ)→ ([α]φ→ [α]ψ);

[α](φ⊕ φ)↔ [α]φ⊕ [α]φ;

[α](φ⊕ φn)↔ [α]φ⊕ ([α]φ)n;

(iii) reduction axioms:

[α ∪ β]φ↔ [α]φ ∧ [β]φ;

[α;β]φ↔ [α][β]φ;

[0K]φ↔ 1;

[1K]φ↔ φ.

(iv) probability axioms:

Pi(e)↔ Pi(f) if e ≡ f

Pi(>)↔ 1

Pi(e ∨ f)↔ (Pi(e)⊕ Pi(f)) if e ∧ f ≡ ⊥

The inference rules are Necessitation (φ/[α]φ for all α) and Modus Ponens.

The axiom system FP(KŁ) extends the axiom system KŁ of [3] with “reduction axioms” and FP. (The axioms
of KŁ use the notation φn for φ� · · · � φ where φ appears n-times, and ≡ for Boolean equivalence.) Key
lemmas in the completeness proof are the reduction of local consequence over FP(KŁ) to local consequence
over KŁ mentioned above and the completeness proof of [3] using, in addition, our “reduction axioms”.
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Roughly speaking, structural principles are principles whose formulation does not require any constant of the
object language. Classical logic validates a number of well-known structural principles, such as for instance

Id
A J A

Γ J ∆, A A,Σ J Π
×Cut

Γ,Σ J ∆,Π

A,A,Γ J ∆
CJ

A,Γ J ∆

Γ J ∆WJ
A,Γ J ∆

Γ J ∆, A A,Γ J ∆
+Cut

Γ J ∆

Γ J ∆, A,A
JC

Γ J ∆, A

Γ J ∆
JW

Γ J ∆, A

Here, A,B, ... are formulas of the relevant object language, Γ,∆, ... are multisets of formulas, and J represents
logical consequence. ‘C’ stands for ‘Contraction’, ‘W’ for ‘Weakening’, ‘Id’ for ‘Identity’, ‘+Cut’ for ‘Additive
Cut’ and ‘×Cut’ for ‘Multiplicative Cut’.

In the past few years, we have seen the emergence of various logical systems that are coextensive with
classical logic, but in a certain sense invalidate some of the above structural principles. In the model-theoretic
framework, these systems are obtained by finding a consequence relation that validates all and only the
arguments valid in classical logic, but relative to which some of the structural principles are ‘locally invalid’,
that is, fail to preserve satisfaction at every interpretation. Thus, for instance, Cobreros et. al. [6, 2]
and Ripley [4, 5] present system ST, where the Cut principles are locally invalid. Also, Rosenblatt [6]
presents system NC, where not only the Cut principles but also the Contraction principles are locally invalid.
Curiously, no system of this kind has been proposed where the principles of Weakening are locally invalid.
Such a system seems possible in principle, since there are well-known sequent calculi for classical logic where
the rules of Weakening are admissible but not derivable (see, e.g. calculus G3 in Indrzejczak [3, p. 114]).

The contribution of this paper consists of four results. First, we fill the abovementioned gap: we present a
system whose consequence relation is coextensive with that of classical logic, but in which the Weakening
principles and ×Cut are locally invalid. We call this system nwCL (for ‘No Weakening Classical Logic’),
and obtain it by means of a four-valued non-deterministic semantics and a sui generis definition of logical
consequence. Second, we use a dual procedure to obtain a system whose consequence relation is also coextensive
with that of classical logic, but in which the Contraction principles and +Cut are locally invalid; we call it ncCL
(for ‘No Contraction Classical Logic’). Third, we combine the features of the two systems above to obtain
a third system whose consequence relation is still coextensive with that of classical logic, but in which
the principles of Cut, Weakening and Contraction are all locally invalid; we call it msCL (for ‘Maximally
Substructural Classical Logic’). Fourth, and last, we show that all our procedures can be generalized to any
Tarskian logic whatsoever. This means, in particular, that for any Tarskian logic L it is possible to define
a logic msL which is coextensive to L but locally invalidates all structural principles except for Id. This
last result can be seen as a strong generalization of a recent work by Szmuc [7], who shows that for every
Tarskian logic it is possible to define a coextensive system that locally invalidates the Cut principles.

To illustrate the machinery we use, we make a quick and dirty presentation of our systems. We start with
nwCL. Its four-valued non-deterministic semantics is given by the tables
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¬ A
1 {0, 0?}
1? {0, 0?}
0 {1, 1?}
0? {1, 1?}

∧ 1 1? 0 0?

1 {1, 1?} {1, 1?} {0, 0?} {0, 0?}
1? {1, 1?} {1, 1?} {0, 0?} {0, 0?}
0 {0, 0?} {0, 0?} {0, 0?} {0, 0?}
0? {0, 0?} {0, 0?} {0, 0?} {0, 0?}

∨ 1 1? 0 0?

1 {1, 1?} {1, 1?} {1, 1?} {1, 1?}
1? {1, 1?} {1, 1?} {1, 1?} {1, 1?}
0 {1, 1?} {1, 1?} {0, 0?} {0, 0?}
0? {1, 1?} {1, 1?} {0, 0?} {0, 0?}

(As the reader can observe, 1? and 0? work as extra copies of the classical values 1 and 0. While the latter
will ensure that all classical counterexamples are available, the former will give us counterexamples to selected
structural rules.) Given a multiset of formulas Γ, we write A ∈ Γ to mean that A appears in Γ at least once.
Then, given a valuation v, v(Γ) denotes the set {v(A) : A ∈ Γ}. Also, if x is one of our semantic values, |Γxv |
is the number of occurrences of formulas in Γ that receive value x at v. Consequence in nwCL is defined as
follows:

Definition. Γ |=nwCL ∆ if and only if, for every valuation v, it is not the case that both

(a) v(Γ) ⊆ {1, 1?} and |Γ1?

v | 6= 1
(b) v(∆) ⊆ {0, 0?} and |∆0?

v | 6= 1

So, intuitively, value 1? only contributes to generate a counterexample to an argument when it appears at
least twice in the premises. Dually, value 0? only contributes to generate a counterexample when it appears
at least twice in the conclusions. To see how the system locally invalidates the Weakening principles, consider
the instances

p J q
r, p J q

p J q
p J q, r

The leftmost instance is counterexemplified by any valuation v such that v(q) = 0 and
v(p) = v(r) = 1?. The rightmost instance is counterexemplified by any valuation v such that v(p) = 1 and
v(q) = v(r) = 0?. To see how the system invalidates ×Cut, consider

p J r, s s, p J r
p, p⇒ r, r

This instance is counterexemplified, for instance, by any valuation v such that v(p) = 1?, v(r) = 0? and
v(s) ∈ {1, 0}.

The second system, ncCL, is based on exactly the same tables as the previous one. For notational convenience,
we just replace the star ? by a circle ◦ (so the four semantic values are now 1, 0, 1◦ and 0◦). Consequence is
defined as follows:

Definition. Γ |=ncCL ∆ if and only if, for every valuation v, it is not the case that both

(a) v(Γ) ⊆ {1, 1◦} and |Γ1◦

v | ≤ 1
(b) v(∆) ⊆ {0, 0◦} and |∆0◦

v | ≤ 1

So, 1◦ only contributes to generate a counterexample to an argument when it appears exactly once in the
premises, and similarly for 0◦ and the conclusions. To see how the system invalidates the Contraction
principles, consider the instances

p, p J q
p J q

p J q, q
p J q

Both instances are counterexemplified at any valuation v such that v(p) = 1◦ and v(q) = 0◦. As for +Cut,
consider the instance
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p J r, s s, p J r
p⇒ r

It is counterexemplified at every valuation v such that v(p) = v(s) = 1◦ and v(r) = 0◦.

Lastly, system msCL combines the semantics and definitions of consequence of the two previous systems.
Letting 1 = {1, 1?, 1◦} and 0 = {0, 0?, 0◦}, the system has the six-valued non-non-deterministic tables

¬ A
1 0
1? 0
1◦ 0
0 1
0? 1
0◦ 1

∧ 1 1? 1◦ 0 0? 0◦

1 1 1 1 0 0 0
1? 1 1 1 0 0 0
1◦ 1 1 1 0 0 0
0 0 0 0 0 0 0
0? 0 0 0 0 0 0
0◦ 0 0 0 0 0 0

∨ 1 1? 1◦ 0 0? 0◦

1 1 1 1 1 1 1
1? 1 1 1 1 1 1
1◦ 1 1 1 1 1 1
0 1 1 1 0 0 0
0? 1 1 1 0 0 0
0◦ 1 1 1 0 0 0

The definition of consequence is the expectable, namely:

Definition. Γ |=msCL ∆ if and only if, for every valuation v, it is not the case that both

(a) v(Γ) ⊆ 1, and |Γ1?

v | 6= 1, and |Γ1◦

v | ≤ 1
(b) v(∆) ⊆ 0, and |∆0?

v | 6= 1, and |∆0◦

v | ≤ 1

It is easy to see that all the counterexamples to structural rules that we had in systems nwCL and ncCL are
still available here. As announced, in the paper we prove that the three systems presented are all coextensive
with classical logic. That is, letting |=CL stand for the consequence relation of classical logic (defined as usual
by means of the Boolean bivaluations), we have

Theorem. |=CL = |=nwCL = |=ncCL = |=msCL

In the last part of the paper, we generalize our previous results to any Tarskian logic. In short, we first
show how to define, given any logical matrixM with a designated value 1 and a non-designated value 0,
the non-deterministic matricesM?,M◦ andM?◦; these matrices serve to define nw-, nc- and ms-systems,
respectively. Then, we rely essentially on Wójcicki’s result according to which every Tarskian consequence
relation can be characterized by a class M of logical matrices (see [8]) to claim that for every Tarskian logic
L there exist an nw-, an nc- and an ms-counterpart coextensive to it.
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Attention is the capacity of the mind to select a portion of the available information and allow that portion
only to be discovered and learnt [1]. An agent may focus her attention on portions of the external environment
as well as on other agents, and for example learn whether they are paying attention to the same portion of
the environment or whether they are paying attention to each other paying attention to that portion. The
present work focuses on this capacity for social attention, that is, on the capacity to pay attention to aspects
of reality together with other agents. Social attention has been extensively studied in the social and cognitive
sciences, as some forms of it (i.e., joint attention) appear central to fundamental human capacities such as
language acquisition [2]. However, there is still little agreement on the basic mechanisms underlying it and on
what it means to pay attention to something together with somebody else, with scholars still debating whether
and when exactly it gives rise to important group knowledge notions such as common knowledge [3].

In this work, we introduce a formal framework to analyse these social attention mechanisms and their impact
on common knowledge by means of epistemic logic. Our framework generalizes a recent dynamic epistemic
logic (DEL) model for attention-based learning, where agents can pay attention to a subset of the event
happening and learn that subset only [4]. The model in [4] is based on a multi-agent dynamic doxastic
language (i.e., a language for propositional logic together with a belief modality for each agent and a dynamic
modality) extended with attention atoms hap, for each agent a, expressing that a is paying attention to
whether p holds. When hap is true at a state of the model, and p is revealed by an event, agent a learns the
truth value of p, whereas when hap is false at a state of the model, a does not learn the truth value of p. In
[4], agents can only pay attention to propositional atomic formulas p, that is, to factual information that is
not about agents’ attention.

Here, we present a generalization of this framework so that agents can also pay attention to the attention
attitudes of other agents. First, we extend the language introduced by [4] with new atomic formulas hahbp,
defined for any two agents a, b and expressing that agent a pays attention to whether b is paying attention to
whether p holds. This framework allows for an agent a to be paying attention to whether another agent b is
attending to some p, while a is not attending to p herself (i.e., it allows that hahbp and ¬hap are both true at
a state). In this case, our model captures that a learns that b learns whether p obtains, without a learning
anything about p herself.

Social Attention Joint attention is “the ability to coordinate attention toward a social partner and an
object of mutual interest” [3]. In [3], the authors argue that the joint attention notion is used in several
different ways, which suggests a need for clarification or refinement of the notion. They thus introduce a
hierarchy of social attention notions, ranging from weaker to stronger versions of attending together. One of
the key features distinguishing weak and strong forms of social attention is the type of knowledge involved in
or obtained through their attentional states. A strong notion of social attention to an event, for example,
presupposes the agents to have common knowledge about their joint attentional state, and only when they do,
they also obtain common knowledge about the attended event. However, there are types of social attention
where agents may not have common knowledge about their joint attentional state, and may instead be
recursively assuming to have it – as is the case for a social attention notion called common attention [3].
Under common attention, the agents may actually only believe that they established common knowledge
about the jointness of their attention, where their belief might be faulty. This is thus only a weak notion of
social attention, not always involving and not always leading to common knowledge of the jointly attended
object. Stronger kinds of joint attention presuppose a closer connection between agents which is called
attention contact [3]. When two agents establish attention contact, they pay attention to each other paying
attention to an event in a direct way, different from recursive inference, which establishes common knowledge
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of this attending together and thus also achieves common knowledge of the jointly attended event.

The notion of attention contact may be relevant for the discussions about various definitions of common
knowledge in logic, and in particular for characterizing common knowledge in a finitary way only requiring
attentional contact between two agents. Following the literature, we can distinguish two basic approaches
to defining common knowledge: standard recursive or fixpoint definitions, and definitions where common
knowledge is described as sharing some situations or the environment in a certain public way, by the individuals
[5]. We believe that the notion of attention contact might be considered as a candidate for this second notion
of common knowledge, as it constitute a special way of sharing some situations with each other, thus leading
to a characterization of common knowledge via strong notions of social attention.

In the rest of the abstract, we give a more detailed idea of the logical frameworks that we will use to explore
notions of social attention and related common knowledge. We illustrate the first formal framework mentioned
above, where agent may pay attention to other agents paying attention to p, for propositional atoms p. In
the talk, we will present both frameworks mentioned in the introduction above, together with illustrative
examples, their sound and complete axiomatizations, as well as the connection to social attention notions
and common knowledge of the attended object.

Language Throughout, we use Ag to denote a finite set of agents, At to denote a finite set of propositional
atoms. We let H = {hap : p ∈ At, a ∈ Ag} denote a set of attention atoms and HH = {hahbp : p ∈ At, a, b ∈
Ag} denote the set of attention to attention atoms. With p ∈ At, a, b ∈ Ag, q ∈ At ∪ H and E being a
multi-pointed event model (see below), define the language L by:

ϕ ::= > | p | haq | ¬ϕ | ϕ ∧ ϕ | Baϕ | [E ]ϕ.

The attention atom hap reads “agent a is paying attention to whether p”, hahbp reads “agent a is paying
attention to whether agent b is paying attention to p”, Baϕ reads “agent a believes ϕ”, and the dynamic
modality [E ]ϕ reads “after E happens, ϕ is the case”.

The formulas in At ∪H ∪HH ∪ {>} are called the atoms, and a literal is an atom or its negation. We often
write

∧
S to denote the conjunction of a non-empty set of formulas S. To keep things simple, in this work we

assume that all consistent conjunction of literals are in a normal form: (i) each atom occurs at most once; (ii)
> doesn’t occur as a conjunct; and (iii) the literals occur in a predetermined order (ordered according to
some total order on At ∪H ∪HH). This implies that for any disjoint sets of atoms P+ and P−, there exists
a unique conjunction of literals in normal form containing all the atoms of P+ positively and all the atoms of
P− negatively. For conjuncts that are not on this normal form, we assume them to always be replaced by
their corresponding normal form. For any conjunction of literals ϕ =

∧
1≤i≤n `i and any literal `, we say that

ϕ contains ` if ` = `i for some i, and in that case we often write ` ∈ ϕ. For an arbitrary formula ϕ, we let
At(ϕ) denote the set of propositional atoms appearing in it. We always denote with p a propositional atomic
formulas belonging to At.

Kripke model and DEL Semantically, our framework is based on (pointed) Kripke models and standard DEL
machinery, namely event models and product update. The event models we use, however, are multi-pointed
event models. This is because the event models we introduce below (i.e., the event models for attention
to attention) encompass all possible attention configuration with respect to the announced formulas for all
agents, mapping out, for each attention configuration obtaining in the pointed Kripke model, which is the
update.

Definition 25 (Kripke Model). A Kripke model is a tupleM = (W,R, V ) where W 6= ∅ is a finite set of
worlds, R : Ag → P(W 2) assigns an accessibility relation Ra to each agent a ∈ Ag, and V : W → P(At ∪H)
is a valuation function. Where w is the designated world, we call (M, w) a pointed Kripke model.

Definition 26 (Event Model). An event model is a tuple E = (E,Q, pre) where E 6= ∅ is a finite set of
events, Q : Ag → P(E2) assigns an accessibility relation Qa to each agent a ∈ Ag and pre : E → L assigns
a precondition to each event e ∈ E. Where Ed ⊆ E is a set of designated events, (E , Ed) is a multi-pointed
event model.
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We sometimes denote event models by E independently of whether we refer to an event model (E,Q, pre) or
a multi-pointed event model ((E,Q, pre), Ed).

Definition 27 (Product Update). LetM = (W,R, V ) be a Kripke model and E = (E,Q, pre) be an event
model. The product update ofM with E is the Kripke modelM⊗E = (W ′, R′, V ′) where:

W ′ = {(w, e) ∈W × E : (M, w) � pre(e)},

R′a = {((w, e), (v, f)) ∈W ′ ×W ′ : (w, v) ∈ Ra and (e, f) ∈ Qa},

V ′((w, e)) = {p ∈ At ∪H ∪HH : w ∈ V (p)}.

Given a pointed Kripke model (M, w) and a multi-pointed event model (E , Ed), we say that (E , Ed) is
applicable in (M, w) iff there exists a unique e ∈ Ed such thatM, w � pre(e). In that case, we define the
product update of (M, w) with (E , Ed) as the pointed Kripke model (M, w)⊗ (E , Ed) = (M⊗E , (w, e)) where
e is the unique element of Ed satisfying (M, w) � pre(e).

Definition 28 (Satisfaction). Let (M, w) = ((W,R, V ), w) be a pointed Kripke model. For any q ∈
At ∪H ∪HH, a ∈ Ag, ϕ ∈ L and any multi-pointed event model E , satisfaction of L-formulas in (M, w) is
given by the following clauses extended with the standard clauses for the propositional connectives:

(M, w) � q iff q ∈ V (w);
(M, w) � Baϕ iff (M, v) � ϕ for all (w, v) ∈ Ra;
(M, w) � [E ]ϕ iff if E is applicable in (M, w) then

(M, w)⊗ E � ϕ.

We say that a formula ϕ is valid if (M, w) � ϕ for all pointed Kripke models (M, w), and in that case we
write � ϕ.

Event Model for Attention to Attention In this section, we introduce a specific event model where agents
may pay attention to whether other agents are paying attention to some subsets of the announced formula.
The model is a generalization of the model presented in [4], so we keep the assumptions they make in
that paper. To illustrate, the model captures the announcement (or revelation) of a conjunction of literals
(¬)p1 ∧ · · · ∧ (¬)pn, which are interpreted as the parallel exposure of agents to multiple stimuli. For example,
it could be that we are at a talk and the speaker is presenting a theorem t and a corollary c. This corresponds
to the “announcement” or revelation of t ∧ c. The model below also contains all logical combinations of
positive and negative literals formed with t and c. This is because, as mentioned above, we want to account
for an agent a learning about another agent b learning whether an announcement (conjunction) is true or
false, and in the case in which it is false, then a should think possible that b learns any logical combination of
the literals in the conjunction.

The event models presented below are composed by events which are here all represented by conjunctive
formulas. Each formula is the event’s own preconditions. They specify, for each subset of the set of announced
literals, whether each agent is paying attention to it or not, as well as whether each agent is paying attention
to other agents paying attention to it or not. The relations between events are given by a set of edge principles,
which describe concisely what agents consider possible and learn, given their attention profiles.

Definition 29 (Attention to Attention Event Model F(ϕ)). Let ϕ = `(p1) ∧ · · · ∧ `(pn) ∈ L, where for each
pi, either `(pi) = pi or `(pi) = ¬pi.

The multi-pointed event model F(ϕ) = ((E,Q, idE), Ed) is defined by:
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Qa is such that (e, f) ∈ Qa iff all the following hold for all p:

- Attentiveness1: if hap ∈ e, then if (¬)`(p) ∈ e then `(p), hap ∈ f ;
- Attentiveness2: if hahbp ∈ e, then if (¬)hbp ∈ e then (¬)hbp, hahbp ∈ f ;
- Inertia1: if hap /∈ e then `(p),¬`(p) ∈ f ;
- Inertia2: if hahbp /∈ e then hbp,¬hbp ∈ f ;

Ed = {ψ ∈ E : `(p) ∈ ψ, for all `(p) ∈ ϕ}.

Current work

We are currently working on generalizing the attention to attention event model, so that it is able to account
for any number of nesting of attention atoms, as for example hahbhap. This sort of higher-order attention
expressions are relevant to capture what the literature calls attentional contact, and thus it will be central
when analysing and characterizing common knowledge in a finitary way.
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Notational Variance in Substructural Logics
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For our purposes, a logical system is a pair 〈L,⇒〉 where L is a formal language and ⇒ is a dyadic relation
standing for logical consequence in that language. There are lots of logical systems in the market. Often,
however, two or more of those systems differ in a merely superficial way: they differ only in the symbols for a
given constant (e.g. ‘∧’ vs. ‘&’ for conjunction), or in the syntactic conventions (e.g. Russellian vs. Polish
notation), or in the primitive constants (e.g. negation and conjunction vs. negation and disjunction). When
two systems differ only in such a superficial way, we say that they are notational variants of one another.

In the last years, we have witnessed the emergence of various logics that we may call ‘radically substructural’.
Traditionally, investigations in substructural logics focused mostly on properties such as contraction, exchange,
monotonicity or associativity (see, e.g. [15]). The logics we have in mind, in contrast, challenge the core of
the Tarskian conception of logical consequence by abandoning the properties of reflexivity and/or transitivity.
Systems of this sort can serve various purposes, but their most recent popularisation has to do with the
non-trivial treatment of various paradoxical phenomena (see [1] for a survey).

The guiding question of this paper is: what conditions are necessary and sufficient for two logical systems to
be notational variants? First, I will argue that radically substructural logics pose serious challenges to our
extant answers to these questions; in short, our usual criteria of notational variance either under-generate
or over-generate in presence of these logics. Second, I will propose new criteria which overcome these
challenges.

I start the paper by laying down what I take to be the standard approach to notational variance (exemplified
by [12, 13, 16]). It relies on a central idea, namely, that two logical systems are notational variants just in case
they are what we call ‘coextensive modulo translation’. More precisely, let L1 = 〈L1,⇒1〉 and L2 = 〈L2,⇒2〉
be logical systems. The standard approach is that these systems are notational variants just in case there is
pair of translations τ1 and τ2 such that (i) τ1 faithfully embeds L1 in L2, (ii) τ2 faithfully embeds L2 in L1,
and in addition (iii) the following ‘inversion’ requirement is fulfilled:

A⇔1 τ2(τ1(A)) A⇔2 τ1(τ2(A))

The purpose of this last requirement is to guarantee that the two translations are, so to speak, mutually
coherent.2

In the first substantive part of the paper I analyse how non-reflexive logics pose a challenge to the standard
approach. I take logic TS (see [11]) as my test-case. I present it as the system 〈L,⇒TS〉, where L is a
propositional language with constants ¬, ∨ and ∧, and relation ⇒TS is defined using the strong Kleene
valuations. The sense in which TS undermines the standard approach is straightforward: its non-reflexivity
will always induce a failure of the inversion requirement. To illustrate, let τ1 and τ2 be two copies of the
identity function on L. Clearly, τ1 and τ2 faithfully embed TS into itself. However, p 6⇔TS τ2(τ1(p)). So, the
standard approach under-generates: it delivers that some systems are not notational variants of themselves.
After considering various alternatives, I propose to amend the standard approach by replacing the original
inversion requirement by the following one:3

A,Γ⇒1 C iff τ2(τ1(A)),Γ⇒1 C
Γ⇒1 C iff Γ⇒1 τ2(τ1(C))

2Typically, some additional syntactic constraints are imposed on τ1 and τ2—for instance, that they be the identity function for
atomic formulas. But for our current purposes we can bypass those constraints.

3I draw inspiration from Belnap’s [5] definition of uniqueness for connectives.
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A,Γ⇒2 C iff τ1(τ2(A)),Γ⇒2 C
Γ⇒2 C iff Γ⇒2 τ1(τ2(C))

The resulting criterion solves the problem observed, rendering TS a notational variant of itself. Also, it
delivers the usual verdicts in the more familiar cases. Thus, it constitutes an improvement over the standard
approach.

In the second substantive part of the paper I analyse how non-transitive logics pose a challenge even to this
last, amended criterion. I take logic ST (see [6]) as my test-case. I present it as the system 〈L,⇒ST〉, where
L is as before and ⇒ST is also defined using the strong Kleene valuations. Furthermore, I present classical
logic CL as the system 〈L,⇒CL〉, where ⇒CL is defined as usual using the Boolean bivaluations. The sense
in which ST undermines our amended criterion is the following. On the one hand, ST and CL have exactly
the same valid inferences; as a consequence, they are trivially declared notational variants. On the other
hand, however, ST supports naive, non-trivial theories of paradoxical phenomena which trivialise CL; this
has been considered by many authors (e.g. [3, 7, 9]) as a sufficient reason to say that ST and CL are not
mere notational variants. So, the amended criterion over-generates: it declares as notational variants systems
that are intuitively not. I consider some possible solutions to this problem; in particular, the proposal that
emerges from the works of Barrio et. al. [2, 4], according to which two logical systems are notational variants
just in case they are coextensive modulo translation not only in their valid inferences, but also in their valid
meta-inferences of any finite level. I claim that even this refined criterion over-generates claims of notational
variance. Then, I move on to present my alternative solution. Intuitively, I say that two logical systems are
notational variants just in case the non-logical theories that they support are coextensive modulo translation.4
Moreover, and crucially, I propose to understand non-logical theories not as collections of formulas, but as
collections of inferences. To put things a bit more formally: Let L = 〈L,⇒〉 be a logical system, and let T
be a set of inferences on L, where an inference on L is a pair of collections of L formulas. We will write
LT = 〈L,⇒T〉 to denote the formal system that results from adding all inferences in T to L. Relation ⇒T

might be obtained in different ways. For instance,

• If ⇒ is given by model-theoretic means, then we could define ⇒T by restricting the models of ⇒ to
those that satisfy each inference in T.

• If ⇒ is given by means of a sequent calculus S, we could arrive at ⇒T by adding the inferences in T to
S as axioms.

No matter how relation ⇒T is induced, our reading of LT will be the same: it is the non-logical theory given
by the set of inferences T over the underlying logic L. Then, our criterion can be formulated as follows:
Two logical systems L1 = 〈L1,⇒1〉 and L2 = 〈L2,⇒2〉 are notational variants just in case there is a pair
of translations τ1 and τ2 from L1 to L2 and viceversa such that: (i) For every set of inferences T on L1,
τ1 and τ2 render coextensive modulo translation the formal systems LT

1 and L
τ1(T)
2 , and (ii) For every set

of inferences S on L2, τ1 and τ2 render coextensive modulo translation the formal systems LS
2 and L

τ2(S)
1 .

This new criterion successfully differentiates between systems ST and CL. Moreover, it also gives the right
answers in the more familiar cases. Lastly, I claim that in the literature we find independent motivation to
understand theories as collections of inferences rather than collections of formulas; for instance, such a liberal
understanding of theories is a prerequisite for the treatment of paradoxical phenomena with systems such as
K3 or TS (see [10] and [14], respectively, for recent examples). For all these reasons, I conclude that the new
criterion proposed constitutes a substantial improvement over our usual criteria of notational variance; in
particular, it still gives us correct answers when dealing with radically substructural logical systems.
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Reading Newton’s De Analysi by hyperfinite sums
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In 1669 manuscript De Analysi, Newton derives three theorems, now cornerstones of modern calculus: the
power series for arcsine, the power series for sine, and that the area under the curve y(x) = x

m
n equals

n
m+nx

m+n
n (Rule I). He also sets the rule stating that the area under finitely or infinitely many curves equals

the sum of areas under each curve (Rule II) and shows how to expand into a power series of then-standard
functions such as a2

b+x or
√
a2 + x2 base on some algebraic laws (Rule III).

Proving Rule I, Newton’s approach hinges on an odd procedure of summing up infinitesimal area moments;
for the series of arcsine, he combines Rule II applied to infinitesimal arc moments with the same peculiar
sum operation; dealing with area and arc moments, he employs the concept infinitely small unit segment,
indivisible; deriving the sine series, he adopts an approach other than Rules I to III.

The standard interpretation of De Analysi relies on the Riemann integral and takes Rule I as the fundamental
theorem of calculus: (

∫ x
0
fdt)′ = f(x); it connects Rule II to the theorem on the integration of infinite series:∫ x

0
(
∑∞

1 fn)dt =
∑∞

1 (
∫ x

0
fndt); and interprets Rule III as Taylor’s series theorem. That interpretation, first,

does not correspond to the arguments’ structure regarding the series of arcsine and sine: unlike the modern
approach, Newton derived the arcsine series before the sine series; second, the standard proof of Rule I
requires properties of the exponential function to determine the derivative of f(x) = x

m
n , which make it

anachronic; third, for Newton, finite and infinite cases in Rule II do not require separate arguments, while
under the standard interpretation, these cases are substantially different.

We interpret De Analysi with techniques of nonstandard analysis and represent Newton’s arguments on a
hyperfinite grid, essentially a discrete domain instead of a continuous one. Bridging the gap between finite
and infinite, we mimic Newton’s approach and define the area under a curve as a hyperfinite sum. We
provide rigorous proof of Newton’s Rules I and II and describe a possible process of discovering Rule I using
17th-century techniques.
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Default reasoning is a form of non-monotonic reasoning that allows us to draw plausible conclusions under
incomplete information and in absence of explicit evidence to the contrary: when disproved by new evidence,
these conclusions can be withdrawn [20, 13, 2]. From a logical perspective, default reasoning can be formalized
by extending classical logic with a collection of extra-logical axioms – which encompass the propositional
contents of beliefs held by an ideal reasoner – along with a set of default rules encapsulating the informational
pathways she follows to arrive at defeasible conclusions.

Starting with Reiter’s work [20], default logic’s formalism has first been developed by employing Hilbert-style
calculi [12, 10, 6, 8], and subsequently investigated through semantic tableaux [1, 21] as well as sequent calculi
[5, 9]. However, these proof-theoretic methods have undesirable features on different fronts. Very sketchy:

(i) the proof-search space in Hilbert-style calculi is infinite: this feature makes these calculi less suitable
for representing complex reasoning tasks;

(ii) in tableaux-based calculi, the information flow cannot be controlled at the local level, making it
challenging to enforce fine-grained constraints;

(iii) sequent calculi, while versatile, rely on ad hoc extensions of the underlying language: this feature
makes them less suitable for a modular and uniform proof-theoretic treatment encompassing axiomatic
extensions of classical logic [14].

The aim of this talk is to introduce a novel proof-theoretic approach to default propositional logics, centered
on a non-standard notion of hypersequent. Traditionally, hypersequents are lists of sequents separated by a
bar, originally conceived to provide analytic calculi for modal and intermediate logics lacking cut-free sequent
calculi [3, 4]. We modify the notion of hypersequent in order to embed within derivation trees the consistency
checks involved in the application of default rules: specifically, we redefine hypersequents as hybrid constructs,
each comprising a sequent and a set of antisequents. Departing from the conventional disjunctive interpretation
of the separating bar, we embrace a conjunctive reading [19, 17]. In this framework, antisequents within a
hybrid hypersequent furnish contrary updates concerning the provability of the associated sequent.

Our formalization of default rules through hybrid hypersequents involves specifying distinct extra-logical rules.
Here is the general idea. Initially, we convert each default’s prerequisite into conjunctive normal form while
translating its conclusion into clausal form. Subsequently, for every default rule and each clause within its
prerequisite, we generate two hybrid hypersequents: the first incorporates the clause into its provability part,
whereas the second features the (possibly weakened) combination of the clause with the conclusion in its
provability part. These hybrid hypersequents function as premises for the extra-logical rule corresponding to
the default. The conclusion of such rule comprises a hybrid hypersequent, whose refutability part consists of
all antisequents in the premises alongside the set of negated justifications. This method yields a Gentzen-style
formulation of defaults, characterized by constrained instances of Strengthening – essentially, the inverse rule
of Weakening [7].

On this basis, we design hybrid hypersequent HG4 calculi for default logics. We claim that these calculi
overcome some drawbacks of previous formalisms:

(i) the proof-search space in HG4 calculi is finite;

(ii) HG4 calculi allow for the local control of the information flow;

(iii) HG4 calculi do not rely on ad hoc extensions of the underlying language.
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First, we introduce the formal apparatus for handling axiomatic extensions of classical logic, namely hybrid
sequent calculi with crucial proof-theoretic properties [18]. Next, our focus shifts to hybrid hypersequent
calculi. Here, we establish admissibility of structural rules, invertibility of logical rules and a weakened
version of the subformula property for cut-free proofs. We present hybrid hypersequent calculi that are
sound and (weakly) complete with respect to credulous consequence based over Łukaszewicz extensions
[12], showing that they fail to be strongly complete due to their non-monotonic behaviour in relation to
the addition of extra-logical axioms. Moreover, we highlight that admissible rules fail to be encoded in
provable hypersequents because of the context-sensitivity of extra-logical rules. Subsequently, we present a
hypersequent-based decision procedure for skeptical consequence: this method relies on the abductive search
of counterexamples, thereby circumventing the need for early computation of all extensions [16]. Lastly,
we outline avenues for future research, with a brief discussion on hybrid hypersequent calculi for credulous
consequence based on Reiter extensions [20, 22] and exclusionary default reasoning [11], as well as strongly
complete, controlled sequent calculi for modified credulous consequence [15].
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In this talk, we introduce a natural deduction system for a neutral free logic based on the three-valued strong
Kleene logic extended by definite descriptions. Due to the third truth value formulae with non-denoting
terms have no classical truth value. We define definite descriptions, following Lambert’s axiom, which yields
the minimal theory of definite descriptions.

Free logics are known for their capacity to consider singular terms that are not assumed to denote an existing
object, while quantifiers are presumed to have existential support. There are several approaches to analysing
atomic formulae with non-denoting terms. Positive free logic allows them to be true; negative free logic
requires them to always be false; and neutral free logic assigns them the third value, which can be interpreted
as ‘undefined’ or ‘neither true nor false’.

The interpretation of definite descriptions in free logics often relies on the Lambert axiom:

∀y(y = ıxϕ↔ ∀x(ϕ↔ y = x)) (L)

where ıxϕ is closed and does not have any occurrence of y. Moreover, for simplicity, we impose the following
limitation: the expression ıxϕ does not have any other definite descriptions inside it. This approach leads to
the minimal theory of definite descriptions.

There are many recent publications that focus on the proof theory for free logics and free logics with definite
descriptions. Considering the space constraints, we will only mention a few relevant papers. Woodruff’s
paper [5] focuses on natural deduction systems for neutral free logics. Pavlović and Gratzl’s paper [4] explores
non-standard sequent calculi for these logics. Indrzejczak’s paper [1] discusses sequent calculi for positive and
negative free logics with definite descriptions. Additionally, there is another paper [2] that addresses similar
issues for neutral free logics with definite descriptions.

This study aims to provide a natural deduction version of the findings from [2] that extend the research
conducted by Pavlović and Gratzl in their paper [4] by identity and definite descriptions. Pavlović and
Gratzl see strong Kleene logic K3 and weak Kleene logic Kw

3 [3] as a basis for neutral free logic. For the
purpose of simplicity and due to space constraints, we will solely concentrate on the logic K3. We present a
Gentzen-Prawitz-style natural deduction system for the propositional fragment of K3 in the language with
the connectives ¬,∧,∨,→. We then extend the system by incorporating the universal quantifier ∀, the rules
that define the existence predicate E , the identity predicate =, and finally the ı-term forming operator that
handles definite descriptions.

The propositional rules for K3 are as follows:

(∨I1)
A

A ∨B
(∨I2)

B

A ∨B
(→ I1)

¬A
A→ B

(→ I2)
B

A→ B
(∧I) A B

A ∧B

(∨E)i,j

[A]i [B]j

D1 D2

A ∨B C C

C
(→ E)

[¬A] [B]
Π1 Π2

A→ B C C

C
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(∧E1)
A ∧B
A

(∧E2)
A ∧B
B

(EFQ)
¬A A

B
(¬¬I) A

¬¬A
(¬¬E)

¬¬A
A

(¬→I) A ¬B
¬(A→ B)

(¬→E1)
¬(A→ B)

A
(¬→E2)

¬(A→ B)

¬B

(¬∨I) ¬A ¬B
¬(A ∨B)

(¬∨E1)
¬(A ∨B)

¬A
(¬∨E2)

¬(A ∨B)

¬B

(¬∧I1)
¬A

¬(A ∧B)
(¬∧I2)

¬B
¬(A ∧B)

(¬∧E)i,j

[¬A]i [¬B]j

D1 D2

¬(A ∧B) C C

C

The rules for ∀ are as follows:

(∀I)i

[Ea]i

D
Axa
∀xA

(∀E)
∀xA Et
Axt

(¬∀I)
¬Axt Et
¬∀xA

(¬∀E)i,j

[¬Axa]i, [Ea]j

E
¬∀xA C

C

where in (∀I), the parameter a does not occur free in any undischarged assumptions of D except Ea; in (∀E)
and (¬∀I), t is free for x in A; in (¬∀E), the parameter a does not occur in ¬∀xA(x), nor in C, nor in any
formulas undischarged in E except ¬Axa and Ea.

The rules for E are given below, where P ~(t) stands for P (t1, . . . , tn):

(EME)i,j

[Et]i [¬Et]j
D1 D2

C C

C
(P [t]E)i

[Et]i
D

P [t] C

C
(¬P [t]E)i

[Et]i
D

¬P [t] C

C

(¬P ~(t)I)i,j

[Et1, . . . , Etn, P ~(t)]i [¬P ~(t)]j

D1 D2

C C

C
(P ~(t)I)i,j

[Et1, . . . , Etn,¬P ~(t)]i [P ~(t)]j

D1 D2

C C

C

where both P [t] and P (t1, . . . , tn) denote atoms or identities but not Et, moreover identities of the form
b = d are excluded. In P [t] there is at least one occurrence of t and there may be other terms; in
P (t1, . . . , tn) there are no other terms.

The rules for = are as follows:

(¬ = I)i,j,k

[¬t ≈ s]i [¬Axt ]j [Axs ]k

D1 D2 D3

C C C

C
(= I1)i

[t = t]i

D
Et C

C
(= I2)i

[a = d]i

D
Ed C

C

where Axt is an atomic formula, or identity, or Et, t ≈ s denotes either t = s or s = t, a is a fresh parameter
and d is an arbitrary description.
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Finally, here are the rules for ı:

(ıI)i,j,k,l

[c = ıxA]i [Ec]j , [Ea]k, [Ec]k [Ea]l

D1 D2 D3 D4

C Axc a = c ¬Axa
C

(ıE1)i

[Axc ]i, [Ec]i
D

c = ıxA C

C

(ıE2)i,j

[Eb]i, [Ec]i, [¬Axb ]i [b = c]j , [Eb]j , [Ec]j
D1 D2

c = ıxA C C

C

(¬ıI1)i,j

[¬c = ıxA]i [Ec]j
D1 D2

C ¬Axc
C

(¬ıI2)i,j,k

[¬c = ıxA]i [Eb]j [Eb]k, [Ec]k
D1 D2 D3

C Axb ¬b = c

C

(¬ıE)i,j

[Ec]i, [¬Axc ]i [Ea]j , [Ec]j , [¬a = c]j , [Axa]j

D1 D2

¬c = ıxA C C

C

where in (ıI), the parameter a does not occur in any undischarged assumption of D3 and D4, except Ea; in
(¬ıE), the parameter a does not occur in any undischarged assumption of D2, except Ea, ¬a = c, and Axa.

During our talk we plan to introduce this natural deduction system and describe its properties. In particular,
we explore the possibility of proving the normalisation theorem and establishing the negation subformula
property. Besides, we intend to describe an adequate semantics for this natural deduction system as well as
its connection with the sequent-based calculi from [4] and [2].
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General Tableaux Method for Metainferential Logics
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Traditionally, a logic was equated to the set of inferences it deems valid. However, recent developments in
the field of substructural logics have posed a challenge to this idea. More specifically, the mixed logic ST,
defended by Cobreros, Egré, Ripley and van Rooij as a solution to both the sorites paradox ([4]) and the
semantic paradoxes ([5], [12]), has shown a way in which the traditional way of characterizing a logic falls
short: ST has the same valid inferences as CL whilst being non-transitive, in the sense that Cut is locally
invalid according to its semantics. In spite of both sharing the same set of valid inferences, ST would appear
to be a non-classical logic, given that the transitivity of the logical consequence relation (codified in the Cut
rule) is usually regarded as a key feature of classical reasoning.

In light of this problem, and bearing in mind that Cut is not an inference between formulae, but rather an
inference between inferences (i.e., a metainference), several authors ([2], [1]) shifted the focus from inferences
to metainferences, and defended that logics are not only defined by their inferences, but also by their
metainferences. According to this view, logics that coincide in their inferences, but not in their metainferences,
are considered different. This kick-started the development of what we now call metainferential logics : logics
where we have metainferences of any level n, which are built as hierarchies over known inferential logics.

Before laying down our proposal, let us first introduce some indispensable technical machinery regarding
inferences. We will be working with a propositional language L. We use uppercase latin letters (A,B,C...) as
stand-ins for formulas of any complexity. Let V be a set of truth-values. Following [3], we stipulate that a
standard X is a non empty subset of V. We say that a valuation v satisfies a formula A according to the
standard X if and only if v(A) ∈ X.

An inference on L is an ordered pair of sets of sentences of L, written Σ⇒ Π. We say that a valuation v
confirms or satisfies an inference Σ ⇒ Π according to a pair of standards XY if and only if, if v satisfies
every A ∈ Σ according to the standard X, then v satisfies some B ∈ Π according to the standard Y . On the
contrary, call a valuation v that satisfies every premise according to X but doesn’t satisfy any conclusion
according to Y a counterexample in XY to said inference. Crucially, X and Y need not be the same.

Notice that a set of valuations V and a pair of standards XY is enough to define a (mixed) consequence
relation, which in turn, can be used to characterize an (inferential) logic XY: an inference Σ⇒ Π is valid
in XY if and only if every valuation satisfies it according to XY . Equivalently, if and only if no v is a
counterexample in XY to it.

Following [3], we say that mixed logics are those whose consequence relation can be characterized in this
manner. When the standard for the premises and the standard for the conclusions coincide, we call them
mixed and pure logics. When they are not the same, we say they are mixed and impure logics.

This concludes the preliminaries about inferential logics. For metainferential logics, we proceed in a similar
fashion. We define a metainference (of level 1) as an ordered pair of sets of inferences, written Γ⇒1 ∆.

The notion of metainferential validity can be made precise in two ways: as preservation of satisfaction (local
validity) or as preservation of validity (global validity). The first view is the most wide-spread and the one
we will be working with. We say that a metainference (of level 1) is locally valid in the metainferential logic
XY/WZ if and only if, for every valuation v, if v satisfies each inference γ ∈ Γ according to the pair of
standards XY , then v satisfies some inference δ ∈ ∆ according to the pair of standards WZ. Again, notice
that inferences in Γ and inferences in ∆ could, in principle, be evaluated under different inferential standards,
thus obtaining metainferential mixed impure logics.
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This construction can be iterated to obtain metainferences of any level n, for n ≥ 1, defined as ordered pairs
of sets of metainferences of level n− 1, and written Γ⇒n ∆.

Accordingly, a metainferential logic can be of any finite level n, since we can also define a consequence relation
that specifies preservation of satisfaction over a pair of standards for metainferences of level n (where n < ω):
a metainference (of level n ≥ 1) is locally valid in the metainferential logic XY if and only if, for every
valuation v, if v satisfies each metainference (of level n− 1) γ ∈ Γ according to the pair of standards found in
X, then v satisfies some metainference (of level n− 1) δ ∈ ∆ according to the pair of standards found in Y .

So far, we made a brief introduction to metainferential logics from a semantic perspective. Some proof-
theoretic accounts have been presented in the literature, although most of them either concentrate on level 1
metainferences ([7]) or are limited to the Strong Kleene family of metainferential logics ([8], [6], [9], [10]).
The main goal of this talk is to remedy this lack of generality, by providing a method to build tableaux for
metainferential logics (of any level n) upon tableaux for inferential logics. The general recipe we provide
here helps us obtain metainferential tableaux for metainferential logics based on the Strong or Weak Kleene
three-valued schema, the Belnap-Dunn four-valued schema, and in principle, infinitely many others, as long
they are finitely valued and meet certain conditions.

To achieve our aim, we work with three types of rules: general rules for metainferences, general rules for
formulas, and lastly, particular rules for the connectives (of a given valuation schema). The first two kinds of
rules (general rules) can be added on top of different sets of particular rules, thus creating a metainferential
tableaux system for metainferential logics which, in turn, use different inferential logics as building-blocks.
We consider this ‘modular’ quality of our tableaux rules to be the main advantage of the proof system we
present here, and what sets it apart from the rest of the proof systems for metainferential logics found in the
literature.

To demonstrate how our tableaux work, we take as an example the Strong Kleene semantics, which has
three truth-values: {1, 1

2 , 0}. We define two standars, s = {1} and t = {1, 1
2}. With these, we can define

four very well-known inferential logics: K3, whose consequence relation is defined for the pair of standards
SS; LP, whose consequence relation is defined for the pair TT ; TS, whose consequence relation is defined
for the pair TS; and lastly, ST, whose consequence relation is defined for the pair ST . One can take
these 4 inferential consequence relations as metainferential standards, thus obtaining 16 new metainferential
consequence relations of level 1 (as witnessed by [11]). And by iterating this procedure, one can generate the
Strong Kleene hierarchy of metainferential logics.

We work with two kinds of labels: γ, x and γ, x. The former can be interpreted as stating that γ satisfies the
standard x, while the latter can be interpreted as stating that γ does not satisfy the standard x.

On the one hand, the general rules for metainferences allow us to go from inferences and metainferences of
any level to the formula level:

Rules for metainferences

INF0 INF1

Γ⇒ ∆, xy

γ1, x

...
γi, x

δ1, y

...
δj , y

Γ⇒ ∆, xy

δj , y. . .δ1, yγi, x. . .γ1, x

The rule INF1 codifies (meta)inference satisfaction, since it states that if Γ⇒ ∆ is satisfied by a valuation v
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according to XY , then either some of the premises is not satisfied in v according to X or at least one of the
conclusions is satisfied in v according to Y . Meanwhile, INF0 states that if it is not the case that Γ⇒ ∆ is
satisfied by a valuation according to XY , then that means every premise is satisfied in v according to X and
none of the conclusions are satisfied in v according to Y . To check if a metainference Γ⇒n ∆ is valid in the
metainferential logic XY, we start the tree with Γ⇒ ∆, xy.

On the other hand, there are general rules for formulas, which allow to operate on labels:

Rules for labels
Complement Singletons Intersection

A, x

A,V − x

A, {i, . . . , j}

A, {j}. . .A, {i}

A, x
A, y

A, x∩y

First, Complement allows us to shift from a overlined label to a simple label. Secondly, Singletons takes
a formula with a standard comprised of multiple elements (truth values i...j), and it opens a new branch
for each element. And thirdly, Intersection allows us to take different nodes (on the same branch) with the
formula A labelled with x and y, and extend the tree downwards with A and the label corresponding to the
intersection of the standards x and y. We stipulate that a branch closes if and only if the intersection of A, x
and A, y is empty.

Finally, the particular rules fix the inferential logic upon which we will be working on. They have to meet
certain requirements, such as being finitely valued. For all operations ? of L and every truth value i ∈ V,
we have to define rules of the form ?i, where every possible combination of operation ? and truth-value i is
exhausted. For instance, the rules for the Strong Kleene negation and conjunction would be this:

Rules for negation

¬1 ¬1
2 ¬0

¬A, {1}

A, {0}

¬A, { 1
2}

A, { 1
2}

¬A, {0}

A, {1}

Rules for conjunction

∧1 ∧1
2 ∧0

A∧B, {1}

A, {1}
B, {1}

A∧B, { 1
2}

A, { 1
2}

B, {1, 1
2}

A, {1, 1
2}

B, { 1
2}

A∧B, {0}

B, {0}A, {0}
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Non-Deductive Term Logic Tableaux
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Term Functor Logic (TFL, for short) is a relatively novel logic that follows the tradition of Aristotelian
logic —hence its alternative name, Traditional Formal Logic— in the sense that it uses a term syntax rather
than a Fregean syntax; however, it still needs some tweaks in order to claim its rightful place within the
realm of Aristotelian logic —not that it needs to, but we would like to see it there! For instance, in other
places we have offered some ways in which we can update TFL in order to comply with some criteria for
relevance insofar as Aristotelian logic requires some sort of relevance. And so, following this train of thought,
in this contribution we try to update TFL by adding some ways in which we can deal with non-deductive
inference, namely, inductive and abductive inference, insofar as Aristotelian logic demands the treatment
of non-deductive inference. Thus, in order to reach this goal, in this contribution we combine TFL and a
proxy of Non-Axiomatic Logic —which is a term logic that deals with non-deductive inference— by way of
a tableaux method. The result is a tableaux method within the framework of TFL that is able to model
non-deductive inference.
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One Problem from Carnap and Wójcicki
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Two ideas from Carnap and Wójcicki give place to a simple problem concerning the set of logic presentations.
In [1, p.29], Carnap stated that

"The choice of rules and primitive sentences — even when a definite material interpretation of the calculus is
assumed beforehand — is, to a large extent, arbitrary. Often a system can be changed (without changing
the content) by omitting a primitive sentence, and, in its place, laying down a rule of inference — and
conversely”.

A little more than fifty years later, [4] defined a propositional logic of formulas as a set of formulas of a
propositional language closed under substitutions, and a propositional logic of inferences as a structural
consequence operation in a propositional language. Such consequence operation is determined by one set of
inferences considered valid.

It is natural to think that both types of logics are opposite ends in a possibly infinite series of presentations
of the same linguistic structure, determined by the sort of variations described above by Carnap (I will call
them Carnap variations here for lack of a better name). One obvious problem emerges from this: under
what conditions would it be possible to perform this Carnap operation to logical systems to provide as many
deductive bases as possible to characterize them between both Wójcicki’s pure ends?

There are some natural ways to perform Carnap variations. Sometimes they seem pretty obvious, like
substituting

` (ϕ ∧ ψ)→ ϕ (0.3)

for
ϕ ∧ ψ ` ϕ (0.4)

After some reflection, it is unavoidable to think that every replacement of one or more inference rules should
require the ascription to one or maybe more functionally equivalent theorems and vice versa, meaning that
the set of rules of inference should provide the same results as the chosen axioms. We say that (1) and (2)
are functional equivalent because thanks to (2), we can obtain the same result that we derive from (1) plus
another rule, like Modus Ponens (MP):

` ϕ ∧ ψ ` (ϕ ∧ ψ)→ ϕ

` ϕ
MP (0.5)

To replace (2) with (1) we should be required to add MP to still obtain the same conclusion (` ϕ) from the
same premise (` ϕ ∧ ψ). One can object, insisting that premises and conclusions are not exactly the same in
both cases. (2) is a more general rule because its application is not restricted to theorems, but it does not
seem relevant when our only goal is just preserving the set of theorems of a logic after every variation of its
deductive base. It is worth noting that this application of MP is necessary to choose this precise substitution
of (2) by (1) and to provide an account of the equivalence of at least two presentations of a logic containing
one of them, from a functional point of view. This also shows that replacements cannot be defined as merely
one-to-one substitutions but should be considered in the context of other axioms and rules.

Functional equivalence seems essential, in any case, to preserve the same set of theorems of a logic after the
variation.
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Apparently, when replacing rules of inference with axioms we should also restrict our attention to one single
type of rule. Following Wójcicki, we can distinguish between Hilbert and Gentzen types of rules (also H- and
G-rules). Hilbert-style rules are instructions like: ´From Γ (being Γ any set of formulas including the empty
set) infer ϕ’. Gentzen-style rules are also instructions, but more general: ´From Γ infer ϕ, provided that ψ
has been inferred from ∆’. Note that axioms and proper rules of inference in a deductive base are H-rules. It
seems, anyway, impossible to replace H-rules with G-rules even though standard proofs of the Deduction
Theorem (DT) show that a G-rule like that could emerge from a set of H-rules. In any case, that is different
from stating that DT could replace those H-rules. In any case, that is still a pending problem. Maybe, it
could replace them with more G-rules. Otherwise, Gentzen-proof systems for logics originally described only
by H-rules could not be possible.

The fact that DT holds for a logic is another requirement for performing Carnap’s variations, that must be
preserved. There are examples in the literature (like [2]) of a possible variation of a presentation of Classical
Logic that is not like those suggested by Carnap. [2] offered a deductive base closing all the classical logic
theorems losing the MP rule. So, even though the formula

(ϕ ∧ (ϕ→ ψ))→ ψ (0.6)

is a theorem in his system, the modus ponens rule in (2) is not derivable but only admissible. Following
Wójcicki, call (4) the generated formula from (2).

On those systems where DT only holds partially (like in modal logics), it seems necessary to impose certain
restrictions to recover it. We cannot replace a rule like ´from ` ϕ derive ` �ϕ’ for a formula like ` ϕ→ �ϕ.
This suggests that the way we define DT may be important to perform Carnap’s variations of a deductive
base (See [3]). On systems where DT does not hold at all, the only possible variations are replacements
among proper rules of inference (rules deriving formulas from a non-empty set of formulas).

One interesting case is that of replacing the last single proper rule of inference in a series of Carnap’s variations.
In that case, we cannot appeal to any functional equivalence given that there are no more rules that could
grant such equivalence (as MP did in our example above). The replacement of the last rule should give place
to the whole set of theorems of a logic. This is natural to conclude in the case of MP from the fact that its
generated formula (4) is equivalent to (5):

((ϕ→ ϕ)→ ψ)→ ψ (0.7)

which could be interpreted as stating that anything that follows from a formula like ϕ→ ϕ could also be
considered as such, given also that ψ → (ϕ→ ϕ) is usually a theorem of many logics.

In this paper, some conditions required to perform Carnap variations are explored, and their significance is
also highlighted.
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Generalized set-assignment semantics for Parry systems
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The proposal of my contribution is an algebraic-oriented approach to the study of content-sensitive connectives
obeying a fully compositional behaviour, enterprise recently started by Thomas Ferguson with a Kripke-style
approach (cf. [6], [7]). In my approach I extend the set-assignment semantics first developed by Richard
Epstein ([5]).

Achieving a satisfying account of content-sensitivity in logic is a long-time goal. The first decisive step in this
direction is Parry’s logic of analytic implication ([10]), who expressed the relation that should hold between
antecedent and consequent of an entailment in the form of the so-called proscriptive principle: "No formula
with analytic implication as main relation holds universally if it has a free variable occurring in the consequent
but not the antecedent." ([10], p.151). This principle is a pioneering attempt to implement a logical theory
of subject-matter inclusion, which developed into various formalisms like relevance and containment logics.
Among the most recent development in the field, there are Francesco Berto’s works (e.g., [1], [2]). Berto
introduces a modal language for a family of operators called topic-sensitive intensional modals (TSIMs).
These are operators of the form Xψφ, whose intuitive reading is "on the base of ψ, an agent Xs that φ",
for some propositional attitude expressed by X. Berto further provides a possible world semantics for these
operators, in which a necessary condition for the truth of Xψφ is that the content of ψ must be related to
the content of φ. It is then shown how imposing conditions on such operators gives different reading of the
modality, each suitable for modeling various hyperintensional phenomena. What this framework lacks, as
pointed by Ferguson ([6]), is that in Berto’s work the problem of the content of formulae involving any TSIM
is left unanswered. In fact, while the formulae belonging to the non-modal fragment of the language are
assigned a topic via a function t, that doesn’t apply to formulae prefixed by a TSIM. Therefore the system is
in this sense only first-degree, nested TSIMs are not allowed, restricting severely the expressive power of such
languages.

In [6], Ferguson tries to provide a very weak system in which a content-sensitive intensional implication is
both provided with an associated content without imposing any restriction on such assignment. His study
starts from Parry’s logic of analytic implication PAI. In the Kripke-style semantics provided by Fine in [8]
for a language with an analytic implication →, PAI is the logic charactized by a certain class of frames for
modal logic S4 in which every world is expanded with a join-semilattice. This provides the topics of each
formula at that world, obtaining models of the form 〈W,R, 〈Tw,⊕w〉w∈W , v, t〉, where t : W × Fm→ Tw is
the topic function, that obeys tw(¬φ) = tw(φ) and tw(φ ◦ ψ) = tw(φ)⊕ tw(ψ), for all binary ◦. In order to
weaken the system to allow for the various interpretations of →, Ferguson removes any condition on the
content of implicative formulae, expanding the topic semilattice 〈Tw,⊕w〉 with a groupoid operation( s.t.
tw(φ→ ψ) = tw(φ)( tw(ψ). This implication is content-agnostic, as Ferguson calls it, since no condition are
imposed over the respective operation on the topic semilattice. The resulting logic is CA/PAI, a subsystem
of PAI.

Related to Parry’s logic, there is its demodalization proposed by Dunn ([3]), which was independently
rediscovered by Epstein ([4]) within his set-assignement semantics. This framework defines a model for a
propositional language as a pair 〈v, s〉, where v is a two-valued valuation function and s : Fm→ P(X) maps
each formula of the language to a subset of a fixed countable set X. The interaction between these two
functions allows some connectives to become intensional. In the case of those which Epstein names relatedness
and dependence logics, the only intesional connective is implication. A formula φ → ψ has its standard
Boolean value in case a specific relation holds between the intensional component of φ and ψ, namely s(φ)
and s(ψ), otherwise the implication is false. In the case of dependence logic D - equivalent to Dunn’s DAI -,
said relation is s(φ) ⊇ s(ψ). Set-assigment semantics is a versatile tool, in fact by tweaking the conditions
on s we can obtain classes of models which characterize well known logics, like intuitionistic logic, various
modal logics, many-valued logics like Łukasiewicz and strong Kleene logics. Despite its virtues, set-assignment
semantics also has a serious limitation, which derives from the structure of the powerset P(X) that is the
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codomain of s. In order to generalize this approach, we want to be capable of choosing an arbitrary algebra as
the codomain of s, in order to potentially get rid of some unwanted properties inherited from the powerset.

It is possible to generalize set-assignment semantics by allowing complete freedom in the choice of the
algebra of truth-values (the 2-element Boolean algebra in Epstein’s case) and the algebra of contents (that
is P(X) for Epstein). Since these two algebras can have different types, we have to provide also a mean
to translate the language in the type of the first one into the language of the second one. We can define a
general Epstein model for a language of type ρ0 as a tuple 〈A,B, ν, vA, vB〉. A is an algebra of type ρA ⊆ ρ0,
B is an algebra of type ρB. ν : Fmρ0 → FmρB is a mapping that satisfies ν(x) = x and ν(α(x1/β1, ...
xn/βn)) = ν(α)(x1/ν(β1), ... xn/ν(βn)) for all variables x, x1, ... xn ∈ V ar, and formulae α, β1, ... βn ∈ Fmρ0 .
Finally vB : FmρB → B is a homomorphism, while vA : Fmρ0 → A is a mapping which is a homomorphism
only w.r.t. the symbols of ρA.

Considering a language of type 〈¬,∨,→〉, where → is an intensional implication, Epstein’s logic D can be
easily recaptured via models of the form 〈B, 〈S,⊕〉, ν, v, s〉, where B is any Boolean algebra, 〈S,⊕〉 is a
join-semilattice, ν behaves like the t function illustrated above for Fine’s models for PAI, s : ν[Fm]→ S is a
homomorphism, and v is a Boolean valuation with the exception that:

v(φ→ ψ) =

{
v(¬φ ∨ ψ) if s(ν(ψ)) ≤⊕ s(ν(φ))

0B otherwise

Moreover we can weaken the conditions on the translation mapping ν and obtain a content-agnostic system in
the style of Ferguson’s CA/DAI. We obtain models of the form 〈B, 〈S,⊕,(〉, ν, v, s〉, which differ from the
previous ones for the fact that the join-semilattice 〈S,⊕〉 is expanded with a groupoid operation (: S2 → S,
that is an operation with no further properties. Now ν(φ→ ψ) = ν(φ)( ν(ψ). I axiomatized DAI0, the
logic of this class of models, and proved it is equivalent to Ferguson’s CA/DAI.

Returning to Parry’s logic, no set-assignment semantics for PAI has been presented in the literature. What
I provide is a first step in that direction, giving a generalized Epstein semantics w.r.t. which the global
version of Parry’s logic is complete. By global version, we intend Fine’s axiomatization of PAI where the
necessitation rule is substituted by its global counterpart: (Necg) φ ` �φ.

We start by Ferguson’s subsystem CA/PAI and provide a semantics for its global version. For a modal
language 〈¬,∨,�,→〉, a PAI0-model is a tuple 〈B�, 〈S,⊕,(〉, ν, v, s〉, which differs from the models presented
above for the logic DAI0 for the fact that the algebra of truth-values B� is an interior algebra ([9]). The
global modal logic induced by this class of models has been axiomatized and called PAIg0. In order to obtain
Parry’s global logic, that is PAIg, we restrict the class of models to those s.t. their algebra of contents
〈S,⊕,(〉 satisfies ⊕ =(.

Completeness proofs have been provided for all systems, and equivalence proofs as well w.r.t. the logics D of
Epstein and CA/DAI of Ferguson. While in the case of PAIg and PAIg0 these logics are the global versions
of their respective counterparts PAI and CA/PAI, the usual relation between global and local modal logics
still applies, that is the global logics are stronger than the local ones, while they coincide on their theorems.

The aim of the paper is to introduce generalized Epstein semantics and show its efficacy in the case study of
Parry’s systems and content-sensitive operators.
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Useful Information

The opening and the sessions on the 18th of June are held at the Aula (1st floor) of Collegium Novum
(address: 24 Gołębia, Kraków).

The venue for the conference sessions for the rest of the days (19-21 June) will be at the JU Doctoral School
in the Humanities, 34 Rynek Główny (Main Square), 2nd floor, 31-010 Kraków.
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