Axioms:

Ax.1.	$A \to (B \to B)$	Ax.7. $(A \to B) \to ((A \to C) \to (A \to (B \land C)))$
Ax.2.	$(A \to B) \to ((B \to C) \to (A \to C))$	Ax.8. $A \to (A \lor B)$
Ax.3.	$(A \to (B \to C)) \to (B \to (A \to C))$	Ax.9. $B \to (A \lor B)$
Ax.4.	$(A \to (A \to B)) \to (A \to B)$	Ax.10. $(A \to C) \to ((B \to C) \to ((A \lor B) \to C))$
Ax.5.	$(A \land B) \to A$	Ax.11.' $(A \to B) \to ((A \to \sim B) \to \sim A)$
Ax.6.	$(A \land B) \to B$	Ax.12. $A \to (\sim A \to B)$

Inference rule(s):

RO=Modus ponens	RKom	RP	RPI		RPO	
$\frac{\alpha \qquad \alpha \to \beta}{\beta}$	$\frac{\alpha \to (\beta \to \gamma)}{\beta \to (\alpha \to \gamma)}$	$\frac{\alpha}{\beta \to \alpha}$	$\left \begin{array}{c} \alpha \to \beta \\ \hline \alpha \to \end{array} \right $	$\frac{\beta \to \gamma}{\gamma}$	$\frac{\alpha \to (\beta \to \gamma)}{\alpha \to \gamma}$	$\alpha \to \beta$

1. Check that the KRZ derivations of the following formulas are intuitionistic derivations as well (handout #6).

$$\underset{int}{\vdash} \alpha \to \alpha \qquad \qquad \underset{int}{\vdash} \alpha \to (\beta \to \alpha) \qquad \qquad \alpha \to \beta, \ \beta \to \gamma \quad \underset{int}{\vdash} \quad \alpha \to \gamma$$

- 2. Construct derivations in INT for the following formulas.
 - (a) $\alpha \to \sim \sim \alpha$ however: $\nvdash \\ int \\ int \\ \sim \sim \alpha \to \alpha$ (b) $(\alpha \to \beta) \to (\sim \beta \to \sim \alpha)$ however: $\nvdash \\ int \\ (\sim \alpha \to \sim \beta) \to (\beta \to \alpha)$ (c) $(\alpha \to \sim \alpha) \to \sim \alpha$ however: $\nvdash \\ int \\ (\sim \alpha \to \alpha) \to \alpha$ (d) $\sim (\alpha \land \sim \alpha)$ however: $\nvdash \\ int \\ \alpha \lor \sim \alpha$

Hints:

(1/a) Ax.1 with $A = \alpha \rightarrow (\beta \rightarrow \beta)$, $B = \alpha$, then Ax.1 with $A = \alpha$, $B = \beta$.

- (1/b) Ax.1 with $A = \beta$, $B = \alpha$, then Ax.3 with $A = \beta$, $B = \alpha$, $C = \alpha$.
- (1/c) Ax.2

(2/a) Ax.11' ($A = \sim \alpha, B = \alpha$); (1/b): $\beta / \sim \alpha$; RPI: 2,1; RKom: 3; (1/a): $\alpha / \sim \alpha$; RO: 4,5.

- (2/b) Ax.11'; RKom: 1; (1/b): $\alpha / \sim \beta, \beta / \alpha$; RPI: 3,2; RKom: 4.
- (2/c) Ax.11' $(A = \alpha, B = \alpha)$; (1/a); RO: 1,2.
- (2/d) Ax.11' $(A = \alpha \land \neg \alpha, B = \alpha)$; Ax.5 $(A = \alpha, B = \neg \alpha)$; RO: 1,2; Ax.6 $(A = \alpha, B = \neg \alpha)$; RO: 3,4.