Propositional logic (klasyczny rachunek zdań) KRZ.

Logical connectives (Stałe logiczne): \neg , \land , \lor , \rightarrow , \leftrightarrow

Propositional letters / variables / atomic formulas (zmienne zdaniowe): $p, q, r, \ldots, p_1, p_2, \ldots$

Formulas: Propositional variables are formulas, and if α and β are formulas, then so are $\neg \alpha$, $(\alpha \land \beta)$, $(\alpha \lor \beta)$, $(\alpha \leftrightarrow \beta)$. There are no other formulas.

Later on we will see that with \neg and \lor we can define the other connectives. Terminology:

\wedge	conjunction, "and"	koniunkcja
\vee	disjunction, "or"	alternatywa
7	negation, "not"	negacja
\rightarrow	implication, "ifthen"	implikacja
\wedge	biconditional, if and only if "and"	równoważność

- 1. Which of the following strings are formulas of KRZ?
 - $\begin{array}{ll} (\mathbf{a}) & (p(q) \rightarrow r), & p \rightarrow q, & (p \rightarrow q) \\ (\mathbf{b}) & p \wedge q, & (p \wedge q) \\ (\mathbf{c}) & (p \wedge q \wedge r), & (p \wedge (q \vee p)) \\ (\mathbf{d}) & \wedge (p,q) \\ (\mathbf{e}) & \neg (p), & \neg p, & \neg (\neg p), & \neg \neg p \\ (\mathbf{f}) & (p \rightarrow (q \wedge (p \vee r))), & p \rightarrow (q \wedge (p \vee r)) \\ (\mathbf{g}) & p \rightarrow p \rightarrow p, & p \wedge r \rightarrow p \end{array}$
- 2. Formalize the following sentences in KRZ.
 - (a) It is raining and it is not raining.
 - (b) If i see a dog and a cat, then i see a dog.
 - (c) It is not true that i eat lunch and drink coffee.
 - (d) I do not eat lunch or drink coffee.
 - (e) If i eat lunch, then i drink coffee.
 - (f) If it is not true that (i eat lunch and drink coffee), then (i do not eat lunch or drink coffee).
- 3. Try to find natural language sentences that can be formalized by the following formulas.
 - (a) $(p \to q) \to r$
 - (b) $(p \land q) \lor r$
- 4. We have 2 boxes and 3 matches. Let the atomic formula $p_{i,j}$ mean that the i^{th} match is inside the j^{th} box. Write up formulas (of KRZ) that express:
 - (a) The first box contains all the matches.
 - (b) One of the boxes contains all the matches.
 - $(c)^*$ Every match is in exactly one box.
 - (d)* Every box contains exactly one match.
 - (e)* Pigeonhole principle: If every match is inside some box, then there must be a box which contains at least 2 matches.

Handouts and other course material (books, etc.) can be found here: $iphils.uj.edu.pl/\sim z.gyenis$

rial (books, etc.) can