Propositional logic (klasyczny rachunek zdań) KRZ.

Logical connectives (Stałe logiczne): \sim , \wedge , \vee , \rightarrow , \leftrightarrow

Propositional letters / variables / atomic formulas (zmienne zdaniowe): $p, q, r, \ldots, p_1, p_2, \ldots$

Formulas: Propositional variables are formulas, and if α and β are formulas, then so are $\sim \alpha$, $(\alpha \wedge \beta)$, $(\alpha \vee \beta)$, $(\alpha \to \beta)$, $(\alpha \leftrightarrow \beta)$. There are no other formulas.

Later on we will see that with \sim and \vee we can define the other connectives.

Terminology:

\wedge	conjunction, "and"	koniunkcja
\vee	disjunction, "or"	alternatywa
\sim	negation, "not"	negacja
\rightarrow	implication, "ifthen"	implikacja
\leftrightarrow	biconditional, if and only if	równoważność

- 1. Which of the following strings are formulas of KRZ?
 - (a) $(p(q) \to r)$, $p \to q$, $(p \to q)$
 - (b) $p \wedge q$, $(p \wedge q)$
 - (c) $(p \land q \land r)$, $(p \land (q \lor p))$
 - (d) $\wedge (p,q)$
 - (e) $\sim (p)$, $\sim p$, $\sim (\sim p)$, $\sim \sim p$
 - (f) $(p \to (q \land (p \lor r))), \quad p \to (q \land (p \lor r))$
 - (g) $p \to p \to p$, $p \land r \to p$
- 2. Formalize the following sentences in KRZ.
 - (a) It is raining and it is not raining.
 - (b) If i see a dog and a cat, then i see a dog.
 - (c) It is not true that i eat lunch and drink coffee.
 - (d) I do not eat lunch or drink coffee.
 - (e) If i eat lunch, then i drink coffee.
 - (f) If it is not true that (i eat lunch and drink coffee), then (i do not eat lunch or drink coffee).
- 3. Try to find natural language sentences that can be formalized by the following formulas.
 - (a) $(p \to q) \to r$
 - (b) $(p \wedge q) \vee r$
- 4. We have 2 boxes and 3 matches. Let the atomic formula $p_{i,j}$ mean that the i^{th} match is inside the j^{th} box. Write up formulas (of KRZ) that express:
 - (a) The first box contains all the matches.
 - (b) One of the boxes contains all the matches.
 - (c)* Every match is in exactly one box.
 - (d)* Every box contains exactly one match.
 - (e)* Pigeonhole principle: If every match is inside some box, then there must be a box which contains at least 2 matches.

Handouts and other course material (books, etc.) can be found here: $iphils.uj.edu.pl/\sim z.gyenis$