ALETHIC	$\Box \phi$	it is necessary that ϕ
	$\Diamond \phi$	it is possible that ϕ
DEONTIC	$\Box \phi$	it is obligatory that ϕ
	$\Diamond \phi$	it is permitted that ϕ
DOXASTIC	$\Box \phi$	it is believed that ϕ
TEMPORAL	$F\phi$	it will be the case that ϕ
	$P\phi$	it was the case that ϕ

- **1.** In EPISTEMIC modal logic $\Box \phi$ reads "it is **known** that ϕ ". What is the meaning of $\Diamond \phi$?
- 2. Formalize the following sentences.
 - Necessarily, if snow is white, then snow is white or grass is green.
 - I'll go if I must.
 - It is possible that Scholz will lose the election.
 - Snow might have been either green or blue.
 - If snow could have been green, then grass could have been white.
 - It is impossible for snow to be both white and not white.
 - If grass cannot be clever then snow cannot be furry.
 - God's being merciful is inconsistent with your imperfection being incompatible with your going to heaven.

Truth valuational semantics (as in propositional logic) does not work:

- 1. I am in Kraków.
- 2. It's possible for me to be in Kraków.
- 3. 4 is a prime number.
- 4. It is possible that 4 is a prime number.

Kripke model: (W, R, I) where W = possible worlds, R = accessibility relation, and I = evaluation/interpretation: tells which atomic propositions are true in which worlds. For a world $v \in W$ write $v(\alpha) = 1$ if α is true at v, and $v(\alpha) = 0$ if α is false at v. Rules:

- $v(\sim \alpha) = 1$ iff $v(\alpha) = 0$
- $v(\alpha \wedge \beta) = 1$ iff $v(\alpha) = 1$ and $v(\beta) = 1$
- $v(\alpha \vee \beta) = 1$ iff $v(\alpha) = 1$ or $v(\beta) = 1$
- $v(\alpha \to \beta) = 1$ iff $v(\alpha) = 0$ or $v(\beta) = 1$
- $v(\Diamond \alpha) = 1$ iff there is w such that vRw and $w(\alpha) = 1$
- $v(\Diamond \alpha) = 1$ iff for all w such that vRw, $w(\alpha) = 1$

The formula is **true** (satisfied) **in a model** if it is true at every world.

Modal logic \mathbf{K} : no restriction on R

Modal logic S4: R is transitive and reflexive

- 1. Check the following formulas on K and S4 models.
 - 1. $\Box p \to p$, $p \to \Diamond p$, $\Box \Box p \to \Box p$, $\Diamond p \to \Diamond \Diamond p$.
 - 2. $\Box p \lor \sim \Box p$, $\Box p \lor \Box \sim p$
 - 3. $\Box p \rightarrow \Box \sim p$
- 2. Show by finding countermodels (models where the formulas are refuted).
 - 1. $\not\models_{\kappa} \sim (\Box \sim p \rightarrow \Box (p \rightarrow \sim p))$
 - 2. $\not\models_{S4} \sim ((\lozenge p \vee \Box q) \vee \sim \lozenge \lozenge p)$
 - $3. \not\models_{{\scriptscriptstyle S4}} {\sim} ({\sim} \square (\square p \to \square q) \to {\sim} \square (p \to q))$