Deduction: $\Phi, \alpha \vdash \beta$ if and only if $\Phi \vdash \alpha \rightarrow \beta$ **Theorem:** $\Phi \vdash \alpha$ if and only if $\Phi \cup \{\sim \alpha\}$ is contradictory. **Similarly:** $\Phi \vdash \sim \alpha$ if and only if $\Phi \cup \{\alpha\}$ is contradictory.

Mid term test #1:

1. Formalize the following sentence in propositional logic.

If whenever I walk my dog, I drink coffee, then if I walk my dog, then I drink coffee.

- 2. Write up the truth table of the formula $(p \land q) \rightarrow (p \lor \neg q)$, and decide whether it is a tautology.
- 3. Determine (by any of the methods we discussed) whether the implication below holds.

$$p \to q, q \to r \models p \to r$$

20 Nov 2024:

- 1. Show that $\alpha \to (\beta \to \gamma) \vdash \beta \to (\alpha \to \gamma)$.
- 2. Show that $\alpha \vdash \beta \rightarrow \alpha$ (Hint: use Ax.1 and Ax.2)
- 3. Exhibit the deductions:
 - $\bullet \ \alpha, \alpha \to \beta \vdash \beta$
 - $(\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma), \alpha, \beta \vdash \gamma$
 - $\alpha \to \beta, \sim \beta, \alpha \vdash \text{contradiction}$
- 4. Assume $\vdash \varphi \rightarrow \psi$ and $\vdash \psi \rightarrow \varphi$. Is it true in this case that $\vdash \varphi$ or $\vdash \psi$?
- 5. Show $\alpha \to \beta$, $\beta \to \gamma \vdash \alpha \to \gamma$ using the deduction theorem.
- 6. Show that $\alpha \to \beta, \gamma \not\vdash \beta$.
- 7. Prove that if $\Sigma \vdash \varphi$ then there is a finite subset $\Gamma \subseteq \Sigma$ such that $\Gamma \vdash \varphi$.
- 8. Show $\alpha \to \beta, \sim \beta \vdash \sim \alpha$
- 9. Show that if $\alpha \vdash \varphi$ and $\sim \alpha \vdash \varphi$, then φ is a theorem (i.e. $\vdash \varphi$).
- 10. Is it true that if $\neg \alpha \vdash \beta$ then $\neg \beta \vdash \alpha$?
- 11. Assume $\alpha \vdash \beta$ and $\vdash \alpha$. Show that $\vdash \beta$.

(RKom)