- 1. Define an appropriate language and formalize the following sentences in first-order logic:
 - A is above C, D is on E and above F.
 - A is green, while C is not.
 - Everything is on something.
 - Everything that is free has nothing on it.
 - Everything that is green is free.
 - There is something that is red and is not free.
 - Everything that is not green and is above B, is red.
- 2. Let us set the language as follows: Constant symbols = $\{A, B, C, D, E, F\}$,

 $Predicates = \{On(x, y), Above(x), Free(x), Red(x), Green(x)\}.$

Let us define the model ${\mathcal M}$ with the interpretations:

$$\begin{split} &A^{\mathcal{M}} = b_1, \quad B^{\mathcal{M}} = b_2, \quad C^{\mathcal{M}} = b_3, \quad D^{\mathcal{M}} = b_4, \quad E^{\mathcal{M}} = b_5, \quad F^{\mathcal{M}} = table \\ &On^{\mathcal{M}} = \left\{ (b_1, b_4), (b_4, b_3), (b_3, table), (b_5, b_2), (b_2, table) \right\} \\ &Above^{\mathcal{M}} = \left\{ (b_1, b_4), (b_1, b_3), (b_1, table), (b_4, b_3), (b_4, table), (b_3, table), (b_5, b_2), (b_5, table), (b_2, table) \right\} \\ &Free^{\mathcal{M}} = \{b_1, b_5\}, \qquad Green^{\mathcal{M}} = \{b_4\}, \qquad Red^{\mathcal{M}} = \{b_1, b_5\} \end{split}$$

(a) Draw the model.

The picture below illustrates the model \mathcal{N} , where

$$A^{\mathcal{N}} = hat, \quad B^{\mathcal{N}} = Joe, \quad C^{\mathcal{N}} = bike, \quad D^{\mathcal{N}} = Jill, \quad E^{\mathcal{N}} = case, \quad F^{\mathcal{N}} = ground$$

(b) Write up formally the interpretations of the predicates in \mathcal{N} . (c) For each formula from Exercise 1, decide whether it is satisfied in \mathcal{M} or \mathcal{N} .

- 3. Which of the following statements are true? \mathbb{Q} is the set of rational numbers, and $<^{\mathbb{Q}}$ is the usual ordering among the rational numbers.
 - (a) $\mathbb{Q} \models \forall x \forall y \exists z (x < z < y),$
 - (b) $\mathbb{Q} \models \exists y(y^2 + 1 = 0),$
 - (c) $\mathbb{Q} \models [\forall y(y > 0)] \rightarrow [\exists y(y^2 + 1 = 0)],$
 - (d) $\mathbb{R} \models [\forall y(y > 0)] \rightarrow [\exists y(y^2 + 1 = 0)],$
- 4. Find models and countermodels for the following sets of formulas.
 - (a) $\forall x \exists y \exists z (E(x, y) \land \neg E(x, z));$
 - (b) $\forall x \forall y (x \neq y \rightarrow \exists z (E(x, z) \land \neg E(y, z)));$
 - (c) $\forall x (\exists y E(x, y) \rightarrow P(x));$
 - (d) $\exists x \forall y (f(x, y) = g(y)).$