Clarifications concerning Definition 3.3.27(6):

For any set $R \in Sig$ let \mathfrak{Fr}^R denote the $\operatorname{Alg}_m(\mathcal{L}^R)$ -free algebra generated by R. Let $\mu^R : \mathfrak{F}^R \to \mathfrak{Fr}^R$ be the homomorphic extension of the identity mapping $id : R \to R$. As \mathfrak{F}^R has the universal mapping property with respect to the class $\operatorname{Alg}_m(\mathcal{L}^R)$, for any model $\mathfrak{M} \in M^R$ there is a homomorphism $m_{\mathfrak{M}}^R : \mathfrak{Fr}^R \to \operatorname{mng}_{\mathfrak{M}}^R(\mathfrak{F}^R)$ such that $m_{\mathfrak{M}}^R \circ \mu^R = \operatorname{mng}_{\mathfrak{M}}^R$, i.e. the diagram below commutes.

Define the tautological congruence $\sim^R of \mathfrak{Fr}^R$ by writing¹

$$\mu^{R}(\varphi) \sim^{R} \mu^{R}(\psi) \text{ if and only if } (\forall \mathfrak{M} \in M^{R}) \ m_{\mathfrak{M}}^{R}(\mu^{R}(\varphi)) = m_{\mathfrak{M}}^{R}(\mu^{R}(\psi)), \quad (1)$$

that is, \backsim^R is $\bigcap_{\mathfrak{M} \in M^R} \ker(m_{\mathfrak{M}}^R)$. Notice that $\varphi \sim^R \psi$ if and only if $\mu^R(\varphi) \backsim^R \mu^R(\psi)$.² Let now $P_i \in Sig$ be disjoint sets for $i \in I$ and let P be the disjoint union $\bigcup_{i \in I} P_i$. The congruences \backsim^{P_i} are relations in \mathfrak{Fr}^P . Item (6) of Definition 3.3.27 requires that

$$\backsim^{P} = \operatorname{Cg}^{\mathfrak{F}^{P}}(\bigcup_{i \in I} \backsim^{P_{i}})$$
⁽²⁾

holds.

¹Observe the difference between the symbols \sim and \sim .

²An alternative way would be to define ς^R as the μ^R -image of \sim^R , that is, $\varsigma^R = \{\langle \mu^R(\varphi), \mu^R(\psi) \rangle : \varphi \sim^R \psi\}$. As \mathfrak{Fr}^R is the $\operatorname{Alg}_m(\mathcal{L}^R)$ -free algebra, and \sim^R was defined by the intersection of kernels of meaning homomorphisms, this yields the same definition. Note, however, that the surjective homomorphic image of a congruence is not necessarily a congruence, as transitivity can be violated. In general, surjective homomorphic images of congruences are only tolerance relations: reflexive, symmetric and compatible.