0.1 Lemma. For $Q \subseteq P$ in Sig we have $Alg_{\vDash}(\mathcal{L}^Q) \subseteq HSAlg_{\vDash}(\mathcal{L}^P)$

Proof. For any $\mathfrak{A} \in \operatorname{Alg}_{\vDash}(\mathcal{L}^Q)$ there is a set $K \subseteq M^Q$ such that $\mathfrak{A} \cong \mathfrak{F}^Q/\sim_K$. By properties of a sublogic, for each $\mathfrak{M} \in K$ there is $\mathfrak{N} = \mathfrak{N}_{\mathfrak{M}} \in M^P$ such that $\operatorname{mng}_{\mathfrak{M}}^Q = \operatorname{mng}_{\mathfrak{N}}^P \upharpoonright F^Q$. Let

$$L = \{\mathfrak{N}_{\mathfrak{M}} \in M^P : \mathfrak{M} \in K\}$$

For $\varphi, \psi \in F^Q$ whenever $\varphi \sim_L \psi$ holds then $\varphi \sim_K \psi$ also holds. The set $\{\varphi/\sim_L : \varphi \in F^Q\}$ is the universe of a subalgebra \mathfrak{B} of \mathfrak{F}^P/\sim_L , and the mapping

$$f: \mathfrak{B} \to \mathfrak{F}^Q / \sim_K, \quad f(\varphi / \sim_L) = \varphi / \sim_K$$

is a surjective homomorphism.

For any set $R \in Sig$ let \mathfrak{Fr}^R denote the $\operatorname{Alg}_m(\mathcal{L}^R)$ -free algebra generated by R. Let $\mu^R : \mathfrak{F}^R \to \mathfrak{Fr}^R$ be the homomorphic extension of the identity mapping $id : R \to R$. As \mathfrak{Fr}^R has the universal mapping property with respect to the class $\operatorname{Alg}_m(\mathcal{L}^R)$, for any model $\mathfrak{M} \in M^R$ there is a homomorphism $m_{\mathfrak{M}}^R : \mathfrak{Fr}^R \to \operatorname{mng}_{\mathfrak{M}}^R(\mathfrak{F}^R)$ such that $m_{\mathfrak{M}}^R \circ \mu^R = \operatorname{mng}_{\mathfrak{M}}^R$, i.e. the diagram below commutes.

Define the tautological congruence $\sim^R of \mathfrak{F}^R$ by writing¹

1

$$\mu^{R}(\varphi) \sim^{R} \mu^{R}(\psi) \text{ if and only if } (\forall \mathfrak{M} \in M^{R}) \ m_{\mathfrak{M}}^{R}(\mu^{R}(\varphi)) = m_{\mathfrak{M}}^{R}(\mu^{R}(\psi)), \quad (1)$$

that is, \sim^R is $\bigcap_{\mathfrak{M} \in M^R} \ker(m_{\mathfrak{M}}^R)$. Notice that $\varphi \sim^R \psi$ if and only if $\mu^R(\varphi) \sim^R \mu^R(\psi)$.²

0.2 Theorem. Let $\mathfrak{A} \in \mathbf{SP}\operatorname{Alg}_m(\mathbf{L})$, $P_i \in Sig$ disjoint sets and $h_i : \mathfrak{F}^{P_i} \to \mathfrak{A}$ homomorphisms such that $\sim^{P_i} \subseteq \ker(h_i)$. Let P be the disjoint union of the P_i 's and h be the (unique) homomorphic extension $h : \mathfrak{F}^P \to \mathfrak{A}$ of the union $\bigcup_i h_i$. Then $\sim^P \subseteq \ker(h)$.

Proof. The range of h_i is a subalgebra of \mathfrak{A} and thus it also belongs to $\mathbf{SP}\operatorname{Alg}_m(\mathbf{L})$. By Claim 3.3.41, there is a class $K_i \subseteq M^{P_i}$ such that $\operatorname{ran}(h_i) \cong \mathfrak{F}^{P_i} / \sim_{K_i}$. As \mathcal{L}^{P_i} is a sublogic of \mathcal{L}^P , for each $\mathfrak{M} \in K_i$ there is a model $\mathfrak{N} \in M^P$ such that

$$\mathrm{nng}_{\mathfrak{M}}^{P_i} = \mathrm{mng}_{\mathfrak{N}}^P \upharpoonright F^{P_i}.$$

Let K be the collection of such \mathfrak{N} 's for every $\mathfrak{M} \in K_i$ for all i. Then $\operatorname{ran}(h_i) \in \operatorname{HS}(\mathfrak{F}^P/\sim_K)$ (cf. the proof of Lemma 0.1) and as h extends each h_i we also get that

$$\operatorname{ran}(h) \in \mathbf{H}(\mathfrak{F}^P/\sim_K)$$

and therefore $\operatorname{ran}(h) \in \operatorname{HSPAlg}_m(\mathcal{L}^P)$. The $\operatorname{Alg}_m(\mathcal{L}^P)$ -free algebra \mathfrak{F}^P is free with respect to the class $\operatorname{HSPAlg}_m(\mathcal{L}^P)$ as well, therefore, writing $\mathfrak{B} = \operatorname{ran}(h)$, there is a mapping g such that the diagram below commutes

 $^{^1 \}text{Observe}$ the difference between the symbols \sim and $\sim.$

²An alternative way would be to define \sim^R as the μ^R -image of \sim^R , that is, $\sim^R = \{\langle \mu^R(\varphi), \mu^R(\psi) \rangle : \varphi \sim^R \psi \}$. As \mathfrak{Fr}^R is the $\operatorname{Alg}_m(\mathcal{L}^R)$ -free algebra, and \sim^R was defined by the intersection of kernels of meaning homomorphisms, this yields the same definition. Note, however, that the surjective homomorphic image of a congruence is not necessarily a congruence, as transitivity can be violated. In general, surjective homomorphic images of congruences are only tolerance relations: reflexive, symmetric and compatible.

By 3.3.27(6) the tautological congruence \sim^P of \mathfrak{Fr}^P is generated by the union of the congruences \sim^{P_i} (these are congruences of \mathfrak{Fr}^{P_i} and hence relations in \mathfrak{Fr}^P):

$$\backsim^{P} = \operatorname{Cg}^{\mathfrak{Fr}^{P}}(\bigcup_{i \in I} \backsim^{P_{i}})$$
⁽²⁾

By commutativity of the diagram we have that

$$\sim^P \subseteq \ker(h)$$
 iff $\sim^P \subseteq \ker(g)$.

But this latter inclusion follows as we assumed that for each $i \sim^{P_i} \subseteq \ker(h_i)$ (and thus $\sim^{P_i} \subseteq \ker(g)$) holds.