The Borel-Kolmogorov paradox occurs in the case of a conditional expectation with
respect to a set A of vanishing prior measure. The paper’s thesis is that this can be
analyzed as follows: A measure g4 on a sigma-algebra containing this set A is defined (e.g.
by setting g4(A) = 1) and that transporting this measure on the original sigma-algebra S
by setting ¥(f) := ¥4(E(f|A)) and then defining the posterior measure p(B) := 1 (xp)
resolves or rather explains this phenomenon. The problem is that in the case g4(A) =1
and A having prior measure 0, then the construction of ¢ is not well-defined due too the
measure ¢4 not being absolutely continuous with respect to the prior. This results in
an ill-defined notion of ¥ on the set of measure 0. This is seen most directly by looking
at remark 4 and the following counterexample. Unfortunately, this technicality seems to
weaken both the paper’s analysis of the Borel-Kolmogorov paradox on the unit square
(section 3) and the discussion of the full 3d paradox on the sphere (section 4 and 5).
(Philipp Wacker, FAU Erlangen-Niirnberg, phkwacker@gmail.com)

1 A counterexample

Our underlying probability space is ([0, 1], B(]0,1]), A) with A the Lebesgue measure. We
first condition wrt to A := {0, {0}, (0, 1], [0, 1]}.

The conditional expectation. By the measurability requirement, any version of con-
ditional expectation is of the form £(f|.A) = xoy - C1 + X(0,1) - C2. The integration criterion

yields Cy = fol f(z)dx but cannot resolve the value of C; (because {0} is a 0-set of \).
This means that
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for any C € R.
Choosing a measure g4 on A. We et g4({0}) = p and ¢4((0,1]) = 1—p for arbitrary

but fixed p € [0,1]. Now assume a A-measurable function g, necessarily of the form
g = C1-xq0y +Ca - X(0,1)- Then the linear functional ¥ 4 applied to this is defined as

Yalg) =p-Ci+ (1 —=p)-Cs.

Extending the measure ¢4 to a measure g on B([0,1]). We define the extension of
the linear functional by ¥(f) = ¥ 4(E(f|A) for any f which is Borel-measurable. This is

1
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The extension of the measure is then defined as ¢(B) = ¥ (xp)-

When is @ a proper extension of 47 We need to derive conditions such that
q({0}) = qa({0}) and ¢((0,1]) = qa((0,1]). Concerning the first set, write A = {0}.
Then
q(A) = ¥(xa) = bal(xalA) =p- C+ (1 —=p)-0=p-C
If this is supposed to be equal to g4(A) = p, we need C' = 1.
Secondly, write A° = (0,1]. Then (using C' = 1)

q(A°) = Y(xac) =p-CH+(1—p) =1



But this is only equal to g4(A°) =1 — p, if p =0, i.e. if {0} has g4-measure 0 and g4 is
thus necessarily absolutely continuous with respect to p = .

Comparison to remark 4 in the paper The paper states in remark 4 that ¢ will be
an extension of ¥4 if p(A) = 0 (this is the case here) and g4(A) = 1. But if we enforce
this condition (which means that p = 1), then from above we know that ¢(A¢) # g4(A°)
and thus ¢ is not an extension of ¢4.

The reason why things break down here is the following: On the one hand, from above,

ExwoulA) = x01 + C - X{o}-

On the other hand, x (o1 is A-measurable, i.e. is unchanged by conditional expectation
and

5(X(0,1]|-’4) = X(0,1]-
This makes sense, because conditional expectation is only define up to p-zero-sets (of

which {0} is one. But this ambiguity now makes a huge difference because g4 poses a
non-zero probability here:

q((0,1]) = ¥(x1) =Cp+1—p

and as every value of C' is equally valid, there is no canonical extension of ¢4. Even if we
single out a version by setting C' = 0 (i.e. such that ¢((0,1]) = ¢4((0,1]) = 1 — p), then
the other set makes problems:

1

d({0}) = ¥(xqy) = (1 p) / Yioy(#)dz = 0

which is a violation of the requirement ¢({0}) = g4 ({0}).

If we set C' = 1, then ¢({0}) = ¢a({0}) but 1 = ¢((0,1]) # qa((0,1]) = 1 — p.
Hence we can never choose a consistent version of conditional expectation (which is not
pointwise defined anyway) such that we can extend g4 to ¢. This is because the conditional
expectation has an arbitrary value on a set ultimately due to the fact that g4 is not
absolutely continuous wrt p.

We can generalize this example:

Lemma 1. Let (X,S,p) be a probability space and A be a sub-o-field of S and g4 a
probability measure on (X, A). Define the || - ||1-continuous linear functional ¥4 defined
ViG G4, ©.€.
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Assume that q 4 is not absolutely continuous wrt p. Then there is no consistent extension
of qa to all of q via

q(B) = ¥(xB) = Ya(E(xslA)).

Proof. Consider a set A € A such that g4(A) > 0 but p(A) = pa(A) = 0. Then for
consistency we need ¢(A) = q4(A), hence we compute

q(A) = ¥(xa) = Ya(E(xalA))



Now x4 is A-measurable, and thus £(xa|A) = xa. But £(:|A) is only defined up to sets
of p-measure 0, hence £(xa|A) = C - x4 are valid versions for all values of C'

=1a(C - xa) = C-qa(A) = q(A)

(where the last equality is necessary for consistency of the two measures), and thus we

need to choose C' = 1.
On the other hand,

q(A°) = ¥(xac) = Ya(E(xaclA))

(again, A° is A-measurable but we need to account for arbitrariness in A)

= u(C - xa+ xac) = C - qa(A) + qu(A°) = g(A°)

and thus we need to choose C' = 0. Hence even if we could "nail down" the conditional
expectation on the set A by setting the constant C' (which we cannot), there is no con-
sistent way of doing so. The deeper reason for this problem here is that £(-|.A) is defined
only uniquely up to measures of set 0 with respect to the prior measure p, while 1 4 is
the functional defined by g4 and thus puts positive mass on the set A, hence the outer
function 1 4 is very sensitive with respect to the set to which the inner function £(-|.A) is
“agnostic”. The technicality could thus be summarized as a “plug incompatibility”. O



